
MATLAB® Builder™ NE 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Builder™ NE User’s Guide

© COPYRIGHT 2002–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2006 Online only New for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2.2 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.0.1 (Release 2009a)
September 2009 Online only Revised for Version 3.0.2 (Release 2009b)

Contents

Getting Started

1
Product Overview . 1-2
MATLAB® Compiler Extension . 1-2
Common Language Specification (CLS) Compliancy 1-2
Data Conversion, Indexing, and Array Formatting 1-3
Error Handling . 1-3
Remotable Components . 1-3
COM Components . 1-3

Before You Use MATLAB® Builder NE 1-4
Your Role in the .NET Application Deployment Process . . 1-4
What You Need to Know . 1-7
Install Required Products . 1-7
Select Your C or C++ Compiler with mbuild -setup 1-7

Deploying a Component Using the Magic Square
Example . 1-9
About This Example . 1-9
Magic Square Example: MATLAB Programmer Tasks . . . 1-10
Using the Command Line to Create .NET Components . . . 1-17
Magic Square Example: .NET Programmer Tasks 1-19

Next Steps . 1-30

Using Components Created by the MATLAB®
Builder NE Product

2
Installing the Components on the Development
Machine . 2-2

v

Specifying Component Assembly and Namespace 2-3

Creating an Instance of a Class . 2-4

Using Dispose to Explicitly Free Resources 2-5

Improving Data Access Using the MCR User Data
Interface and MATLAB® Builder NE 2-6
Code Snippets . 2-6
Example . 2-7

Dynamically Specifying Run-Time Options to the
MCR . 2-11
What Run-Time Options Can You Specify? 2-11
Getting MCR Option Values Using MWMCR 2-11

Accessing Real or Imaginary Components Within
Complex Arrays . 2-14
Extracting Real or Imaginary Components 2-14
Returning Values with Component Indexing 2-14
Assigning Values with Component Indexing 2-15
Converting MATLAB Arrays to .NET Arrays Using
Component Indexing . 2-15

Blocking Execution of a Console Application that
Creates Figures . 2-17
WaitForFiguresToDie Method . 2-17
Code Fragment: Using WaitForFiguresToDie to Block
Execution . 2-18

Using MATLAB API Functions in a C# Program 2-20
Overview . 2-20
Example: Using functions engOpen and engEvalString
from the MATLAB Engine API in a C# Program 2-20

Handling Errors . 2-22

Overriding Default CTF Archive Embedding for
Components Using the MCR Component Cache 2-24

vi Contents

Using Enhanced XML Documentation Files 2-26

Sample Applications (C#)

3
Simple Plot Example . 3-2
Purpose . 3-2
Procedure . 3-2

Passing Variable Arguments . 3-7

Spectral Analysis Example . 3-13
Purpose . 3-13
Procedure . 3-15

Matrix Math Example . 3-20
Purpose . 3-20
Procedure . 3-21
MATLAB Functions to Be Encapsulated 3-26
Understanding the MatrixMath Program 3-27

Phonebook Example . 3-28
Purpose . 3-28
Procedure . 3-28

Sample Applications (Microsoft® Visual Basic
.NET)

4
Magic Square Example (Visual Basic) 4-3

Create Plot Example (Visual Basic) 4-7

Variable Arguments Example (Visual Basic) 4-11

vii

Spectral Analysis Example (Visual Basic) 4-15

Matrix Math Example (Visual Basic) 4-20

Phonebook Example (Visual Basic) 4-25
makephone Function . 4-25
Procedure . 4-25

Deploying a MATLAB Figure Over the Web
Using WebFigures

5
About the WebFigures Feature . 5-2
Supported Renderers for WebFigures 5-2

Before You Use WebFigures . 5-3
Your Role in the .NET WebFigure Deployment Process . . . 5-3
What You Need to Know to Implement WebFigures 5-5
Required Products . 5-5
Assumptions About the Examples . 5-6

Quick Start: Implementing a WebFigure 5-7
Overview . 5-7
Procedure . 5-7

Advanced Configuration of a WebFigure 5-15
Overview . 5-15
Manually Installing WebFigureService 5-17
Retrieving Multiple WebFigures From a Component 5-18
Attaching a WebFigure . 5-21
Setting Up WebFigureControl for Remote Invocation 5-23
Getting an Embeddable String That References a
WebFigure Attached to a WebFigureService 5-25

Improving Processing Times for JavaScript Using
Minification . 5-27

Using Global Application Class (Global.asax) to Create
WebFigures at Server Start-Up . 5-28

viii Contents

Upgrading Your WebFigures . 5-30

Troubleshooting . 5-31

Logging Levels . 5-33

Working with MATLAB Figures and Images

6
Your Role in Working with Figures and Images 6-2

Creating and Modifying a MATLAB Figure 6-3
Preparing a MATLAB Figure for Export 6-3
Changing the Figure (Optional) . 6-3
Exporting the Figure . 6-4
Cleaning Up the Figure Window . 6-4
Example: Modifying and Exporting Figure Data 6-4

Working with MATLAB Figure and Image Data 6-6
For More Comprehensive Examples 6-6
Working with Figures . 6-6
Working with Images . 6-6

Sharing Components Across Distributed
Applications Using .NET Remoting

7
Overview . 7-2
What Are Remotable Components? 7-2
Benefits of Using .NET Remoting . 7-2

Your Role in Building Distributed Applications 7-4

ix

Selecting the Best Method of Accessing Your
Component: MWArray API or Native .NET API 7-5

Creating a Remotable .NET Component 7-7
Building a Remotable Component Using the Deployment
Tool . 7-7

Building a Remotable Component Using the mcc
Command . 7-9

Files Generated by the Compilation Process 7-10

Enabling Access to a Remotable .NET Component 7-11
Using the MWArray API . 7-11
Using the Native .NET API . 7-18

Troubleshooting

8
Troubleshooting the Build Process 8-2
Viewing the Latest Build Log . 8-2
Generating Verbose Output . 8-2

Failure to Find a Required File . 8-3

Diagnostic Messages . 8-4
Enhanced Error Diagnostics Using mstack Trace 8-6

Reference Information

9
Requirements for the MATLAB® Builder NE Product . . 9-2
System Requirements . 9-2
Compiler Requirements . 9-2
Path Modifications Required for Accessibility 9-3
Limitations and Restrictions . 9-3

x Contents

Data Conversion Rules . 9-4
Managed Types to MATLAB Arrays 9-4
MATLAB Arrays to Managed Types 9-5
Character and String Conversion . 9-5
Unsupported MATLAB Array Types 9-6

Overview of Data Conversion Classes 9-7
Overview . 9-7
Returning Data from MATLAB to Managed Code 9-8
Example of MWNumericArray in a .NET Application 9-8
Interfaces Generated by the MATLAB® Builder NE
Product . 9-8

MWArray Class Specification . 9-14

Function Reference

10

Creating and Installing COM Components

11
Building a Deployable Application 11-2

About Embedded CTF Archives . 11-4

Using the Command-Line Interface 11-5

Installing COM Components on a Target Computer . . . 11-8

xi

Programming with COM Components Created
by the MATLAB® Builder NE Product

12
General Techniques . 12-2

Registering and Referencing the Utility Library 12-4

Creating an Instance of a Class in Microsoft® Visual
Basic . 12-5
Advantages and Disadvantages . 12-5
CreateObject Function . 12-5
Microsoft® Visual Basic New Operator 12-6
Advantages of Each Technique . 12-7
Declaring a Reusable Class Instance 12-7

Calling the Methods of a Class Instance 12-8
Standard Mapping Technique . 12-8
Variant . 12-9
Examples of Passing Input and Output Parameters 12-9

Calling a COM Object in a Visual C++ Program 12-11
Using the MATLAB® Builder NE Product to Create the
Object . 12-11

Using the Component in a Visual C++ Program 12-12

Using a COM Component in a .NET Application 12-14
Overview . 12-14
C# Implementation . 12-14
Microsoft® Visual Basic Implementation 12-17

Adding Events to COM Objects . 12-21
MATLAB Language Pragma . 12-21
Using a Callback with a Microsoft® Visual Basic Event . . . 12-22

Passing Arguments . 12-26
Overview . 12-26
Creating and Using a varargin Array in Microsoft® Visual
Basic Programs . 12-26

xii Contents

Creating and Using varargout in Microsoft® Visual Basic
Programs . 12-27

Passing an Empty varargin From Microsoft® Visual Basic
Code . 12-28

Using Flags to Control Array Formatting and Data
Conversion . 12-29
Overview . 12-29
Array Formatting Flags . 12-30
Using Array Formatting Flags . 12-30
Using Data Conversion Flags . 12-33
Special Flags for Some Microsoft® Visual Basic Types 12-35

Using MATLAB Global Variables in Microsoft® Visual
Basic . 12-36

Blocking Execution of a Console Application that
Creates Figures . 12-39
MCRWaitForFigures . 12-39
Using MCRWaitForFigures to Block Execution 12-40

Obtaining Registry Information . 12-42

Handling Errors During a Method Call 12-44

Using COM Components in Microsoft® Visual
Basic Applications

13
Magic Square Example . 13-2
Example Overview . 13-2
Creating the M-File . 13-2
Using the Deployment Tool to Create and Build the
Project . 13-3

Creating the Microsoft® Visual Basic Project 13-4
Creating the User Interface . 13-4
Creating the Executable in Microsoft® Visual Basic 13-7
Testing the Application . 13-7

xiii

Packaging the Component . 13-8

Creating an Excel Add-In: Spectral Analysis
Example . 13-9
Example Overview . 13-9
Building the Component . 13-9
Integrating the Component with VBA 13-11
Creating the Microsoft® Visual Basic Form 13-13
Adding the Spectral Analysis Menu Item to Microsoft®

Excel . 13-18
Saving the Add-In . 13-19
Testing the Add-in . 13-20
Packaging and Distributing the Add-In 13-22

Univariate Interpolation Example 13-24
Example Overview . 13-24
Using the Deployment Tool to Create and Build the
Component . 13-24

Using the Component in Microsoft® Visual Basic 13-25
Creating the Microsoft® Visual Basic Form 13-26

Matrix Calculator Example . 13-32
Example Overview . 13-32
Building the Component . 13-32
Using the Component in Microsoft® Visual Basic 13-33
Creating the Microsoft® Visual Basic Form 13-34

Curve Fitting Example . 13-43
Example Overview . 13-43
Building the Component . 13-43
Building the Project . 13-44
Using the Component in Microsoft® Visual Basic 13-44
Creating the Microsoft® Visual Basic Form 13-45

Bouncing Ball Simulation Example 13-51
Example Overview . 13-51
Building the Component . 13-51
Using the Component in Microsoft® Visual Basic 13-52
Creating the Microsoft® Visual Basic Form 13-53

xiv Contents

How the MATLAB® Builder NE Product Creates
COM Components

14
Overview of Internal Processes . 14-2
How Is a MATLAB® Builder NE Component Created? . . . 14-2
Code Generation . 14-2
Create Interface Definitions . 14-3
C++ Compilation . 14-3
Linking and Resource Binding . 14-3
Registration of the DLL . 14-3

Component Registration . 14-4
Self-Registering Components . 14-4
Globally Unique Identifier . 14-5
Versioning . 14-7

Data Conversion . 14-9
Conversion Rules . 14-9
Array Formatting Flags . 14-19
Data Conversion Flags . 14-21

Calling Conventions . 14-23
Producing a COM Class . 14-23
IDL Mapping . 14-24
Microsoft® Visual Basic Mapping . 14-25

Utility Library for Microsoft COM Components

15
Referencing Utility Classes . 15-2

Utility Library Classes . 15-3
Class MWUtil . 15-3
Class MWFlags . 15-10
Class MWStruct . 15-16
Class MWField . 15-23

xv

Class MWComplex . 15-24
Class MWSparse . 15-26
Class MWArg . 15-29

Enumerations . 15-31
Enum mwArrayFormat . 15-31
Enum mwDataType . 15-31
Enum mwDateFormat . 15-32

Examples

A
COM Components . A-2

Sample Applications (C#) . A-2

Sample Applications (Visual Basic .NET) A-2

Glossary

Index

xvi Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Before You Use MATLAB® Builder NE” on page 1-4

• “Deploying a Component Using the Magic Square Example” on page 1-9

• “Next Steps” on page 1-30

1 Getting Started

Product Overview

In this section...

“MATLAB® Compiler Extension” on page 1-2

“Common Language Specification (CLS) Compliancy” on page 1-2

“Data Conversion, Indexing, and Array Formatting” on page 1-3

“Error Handling” on page 1-3

“Remotable Components” on page 1-3

“COM Components” on page 1-3

MATLAB Compiler Extension
MATLAB® Builder™ NE is an extension to MATLAB® Compiler™. The
builder converts MATLAB® functions to .NET methods that encapsulate
M-code written by the MATLAB programmer. All M-code to be compiled
must be in the form of a function. Each MATLAB Builder NE component
contains one or more classes, each providing an interface to the M-functions
in the M-code.

When you package and distribute the application to your users, you include
supporting files generated by the builder as well as the MATLAB Compiler
Runtime (MCR). For more information about the MCR, see“Understanding
the MCR” in the MATLAB Compiler documentation.

Common Language Specification (CLS) Compliancy
CLS is an acronym for Common Language Specification. CLS is a subset of
language features supported by the .NET common language runtime (CLR).
MATLAB Builder NE classes are CLS compliant—they are guaranteed to
integrate seamlessly with all .NET programming languages. CLS-compliant
languages are guaranteed to interoperate with other CLS-compliant
components and tools.

Use the builder to package MATLAB functions so that .NET programmers
can access them from any CLS-compliant language.

1-2

Product Overview

Data Conversion, Indexing, and Array Formatting
The builder provides robust data conversion, indexing, and array formatting
capabilities. For example, to support MATLAB data types, the MATLAB
Builder NE product provides the MWArray data conversion classes in the
MATLAB Builder NE MWArray assembly. You reference this assembly in
your managed application to convert native arrays to MATLAB arrays and
vice versa.

Error Handling
The builder also provides custom error handling so that errors originating
from MATLAB functions are reported as standard managed exceptions. The
error description contains specific references to the MATLAB code, thus
simplifying the debugging process.

Remotable Components
Remotable .NET components allow you to access MATLAB functionality
remotely, as part of a distributed system consisting of multiple applications,
domains, browsers, or machines. They also enable your component to be
deployed in other capacities, such as a Windows® service, for example.

For detailed instructions about creating remotable .NET components, see
Chapter 7, “Sharing Components Across Distributed Applications Using
.NET Remoting”.

COM Components
You can also use the builder to create COM components. COM stands for
Component Object Model, which is a software architecture developed by
Microsoft® to build component-based applications. COM objects expose
interfaces that allow applications and other components to access the features
of the objects. COM objects are accessible through Microsoft® Visual Basic®,
C++, or any language that supports COM objects. For more information
about creating and accessing COM components, see Chapter 11, “Creating
and Installing COM Components” and Chapter 12, “Programming with COM
Components Created by the MATLAB® Builder NE Product”.

1-3

1 Getting Started

Before You Use MATLAB Builder NE

In this section...

“Your Role in the .NET Application Deployment Process” on page 1-4

“What You Need to Know” on page 1-7

“Install Required Products” on page 1-7

“Select Your C or C++ Compiler with mbuild -setup” on page 1-7

Your Role in the .NET Application Deployment Process
Depending on the size of your organization, you may play one or more roles
in the process of successfully deploying a .NET application. For example,
your role may be to:

• Analyze user requirements and satisfy them by writing a program in
M-code.

• Implement the infrastructure needed to successfully deploy a .NET
application to the Web.

• Create a remotable component that can be shared across distributed
systems.

• Perform tasks associated with numerous roles (particularly in a smaller
organization).

The table Application Deployment Roles, Goals, and Tasks on page 1-5
describes some of the different roles, or jobs, that MATLAB Builder NE users
typically perform and which tasks they would most likely perform when
running the examples in this documentation.

1-4

Before You Use MATLAB® Builder™ NE

Application Deployment Roles, Goals, and Tasks

Role Goals Task To Achieve Goal

MATLAB programmer • Understand the
end-user business
requirements and
the mathematical
models needed to
support them.

• Build an executable
component with
MATLAB tools
(usually with
support from a .NET
programmer).

• Package the
component for
distribution to end
users.

• Pass the packaged
component to the
.NET programmer
for rollout and
further integration
into the end-user
environment.

See “Magic Square
Example: MATLAB
Programmer Tasks” on
page 1-10.

1-5

1 Getting Started

Application Deployment Roles, Goals, and Tasks (Continued)

Role Goals Task To Achieve Goal

.NET programmer • Write .NET code to
execute the .NET
assembly built
by the MATLAB
programmer.

• Roll out the packaged
component and
integrate it into
the end user’s
environment.

• Use the component
in enterprise .NET
applications, adding
and modifying code
as needed.

• Address data
conversion issues
that may be
encountered,
according to the end
user’s specifications.

• Ensure the final
.NET application
executes reliably
in the end user’s
environment.

See “Magic Square
Example: .NET
Programmer Tasks”
on page 1-19.

External user Execute the
solution created by
MATLAB and .NET
programmers.

Run the deployed
application (outside the
scope of this document).

1-6

Before You Use MATLAB® Builder™ NE

What You Need to Know
To use the MATLAB Builder NE product, specific requirements exist for each
user role.

Role Requirements

MATLAB programmer • A basic knowledge of MATLAB,
and how to work with:

- MATLAB data types

- MATLAB structures

.NET programmer • Exposure to:

- A CLS-compliant programming
language

- .NET Framework

• Knowledge of object-oriented
programming concepts

Install Required Products
Install the following products to run the example described in this chapter:

• MATLAB

• MATLAB Compiler

• MATLAB Builder NE

• A supported C or C++ compiler

For more information about product installation and requirements, see
“Installation and Configuration”.

Select Your C or C++ Compiler with mbuild -setup
The first time you use MATLAB Compiler, after starting MATLAB, run the
following command:

mbuild -setup

1-7

http://www.mathworks.com/support/compilers/current_release/

1 Getting Started

For more information about mbuild -setup, see “Installation and
Configuration”.

If you need information about writing M-files, see MATLAB Programming,
which is part of MATLAB documentation.

1-8

Deploying a Component Using the Magic Square Example

Deploying a Component Using the Magic Square Example

In this section...

“About This Example” on page 1-9

“Magic Square Example: MATLAB Programmer Tasks” on page 1-10

“Using the Command Line to Create .NET Components” on page 1-17

“Magic Square Example: .NET Programmer Tasks” on page 1-19

About This Example
This example shows you how to transform a simple M-code function into a
deployable MATLAB Builder NE component.

The Magic Square example shows you how to create a .NET component
named MagicSquareComp, which contains the magic class and other files
needed to deploy your application.

The magicSquareClass wraps a MATLAB function, makesquare, which
computes a magic square. A magic square is a matrix containing any number
of rows. These rows, added horizontally, vertically, or diagonally, equate to
the same value. MATLAB contains a function, magic, that you can use to
create magic squares of any dimension.

Note The examples here use the Windows deploytool GUI, a graphical
front-end interface to MATLAB Compiler software. For information about
how to perform these tasks using the command-line interface to MATLAB
Compiler software, see the mcc reference page.

Note If you wish to create a remotable component, and for information about
what this entails, see Chapter 7, “Sharing Components Across Distributed
Applications Using .NET Remoting”.

1-9

1 Getting Started

Magic Square Example: MATLAB Programmer Tasks
The MATLAB programmer usually performs the following tasks.

Key Tasks for the MATLAB Programmer

Task Reference

1. Start the product. “Starting the Deployment Tool” on
page 1-10

2. Prepare to run the example by
copying the MATLAB example files
into a work folder.

“Copying the Example Files” on page
1-11

3. Test the M-code to ensure it is
suitable for deployment.

“Testing the M-File You Want to
Deploy” on page 1-11

4. Create a .NET component
(encapsulating your M-code in a
.NET class) by running the Build
function in deploytool.

“Building Your Component” on page
1-13

5. Prepare to run the Packaging
Tool by determining what additional
files to include with the deployed
component.

“Packaging Your Component
(Optional)” on page 1-16

6. Copy the output. “Copying the Package You Created”
on page 1-17

Note The MATLAB Builder NE examples are in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET. This example
assumes the work folder is on drive D:.

Starting the Deployment Tool
Access the MATLAB Builder NE product through the Deployment Tool GUI
(deploytool) or through the mcc function of the MATLAB Compiler product.
deploytool is the GUI front end for mcc, which executes MATLAB Compiler
software.

1-10

Deploying a Component Using the Magic Square Example

This example uses deploytool. If you want to use mcc, see the mcc reference
page for complete reference information.

To start this product:

1 Start MATLAB.

2 Type deploytool at the MATLAB command prompt. The deploytool
GUI opens.

Copying the Example Files
Prepare to run the example by copying needed files into your work area as
follows:

1 Navigate to
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\MagicSquareExample.

Tip matlabroot is the MATLAB root folder (where MATLAB is installed).
To find the value of this variable on your system, type matlabroot at a
MATLAB command prompt.

2 Copy the MagicSquareExample folder to a work area, for example,
D:\dotnetbuilder_examples. Avoid using spaces in your folder names, if
possible.

3 Rename the subfolder MagicSquareExample to magic_square. The example
files should now reside in D:\dotnetbuilder_examples\magic_square.

4 Using a system command prompt, navigate to
D:\dotnetbuilder_examples\magic_square by switching to the D: drive
and entering cd \dotnetbuilder_examples\magic_square.

Testing the M-File You Want to Deploy
In this example, you test a precreated M-file (magicsquare.m) containing the
predefined MATLAB function magic, in order to have a baseline to compare
to the results of the function when it is finally wrappered as a deployable
.NET component.

1-11

1 Getting Started

1 Using MATLAB, locate the magicsquare.m file at
D:\dotnetbuilder_examples\magic_square\MagicDemoComp. The
contents of the file are as follows:

function y = makesquare(x)
%MAKESQUARE Magic square of size x.
% Y = MAKESQUARE(X) returns a magic square of size x.
% This file is used as an example for the MATLAB
% Builder NE product.

% Copyright 2001-2009 The MathWorks, Inc.

y = magic(x);

2 To run makesquare, ensure that MATLAB can find
it. Select File > Set Path in MATLAB to add the
D:\dotnetbuilder_examples\magic_square\MagicDemoComp
folder to the MATLAB search path.

3 At the MATLAB command prompt, enter makesquare(5) and view the
results. The output should appear as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

About MATLAB Function Signatures. MATLAB supports multiple
signatures for function calls.

The generic MATLAB function has the following structure:

function [Out1,Out2,...,varargout]=foo(In1,In2,...,varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

1-12

Deploying a Component Using the Magic Square Example

All arguments represent a specific MATLAB type.

When the MATLAB Builder NE product processes your M-code, it creates
several overloaded methods that implement the MATLAB functions. Each
of these overloaded methods corresponds to a call to the generic MATLAB
function with a specific number of input arguments. In addition to these
methods, the builder creates another method that defines the return values
of the MATLAB function as an input argument. This method simulates the
feval external API interface in MATLAB.

Building Your Component
You create a .NET component by using the Deployment Tool GUI to build a
.NET class that wraps around the sample M-code discussed in “Testing the
M-File You Want to Deploy” on page 1-11.

Use the following information when creating your component as you work
through this example:

Project Name magicSquareComp

Class Name magicSquareClass

File to compile makesquare.m

1 Create a deployment project. A project is a collection of files you bundle
together under a project file name (.prj file) for your convenience in the
Deployment Tool. Using a project makes it easy for you to build and run
an application many times—effectively testing it—until it is ready for
deployment.

a Type the name of your project in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Target drop-down
menu.

d Click OK.

2 On the Build tab, add what you want to compile, and any supporting
files, to the project.

1-13

1 Getting Started

a Do the following, depending on the type of application you are building:

• If you are building a COM application or Microsoft® Excel® add-in,
click Add files.

• If you are building a .NET application, click Add class. Type the
name of the class in the Class Name field, designated by the letter “c”:

For this class, add files you want to compile by clicking Add files. To
add another class, click Add class.

b Add any supporting files. For example, you can add the following files,
as appropriate for your project:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

• Code you want to remain private

• Code from other programs that you want to compile and link into
the main file

If you want to include additional files, in the Shared Resources and
Helper Files area, click Add files/directories. Click Open to select
the file or files.

3 When you complete your changes, click the Build button ().

How the .NET Builder Creates a Component. To create a component, the
builder does the following:

1 Generates C# code to implement your component

The first step of the build process generates two C# files: a component data
file and a component wrapper. The component data file contains static
information for the component. The wrapper contains the implementation
code for the .NET component and provides a .NET application programming
interface (API) for the MATLAB functions you add to the project at design
time.

2 Compiles the C# code and generates /distrib and /src subfolders

1-14

Deploying a Component Using the Magic Square Example

The second step of the build process compiles the two C# files produced in
step 1, creating a managed assembly for the component.

The MATLAB Builder NE product creates two subfolders under the project
folder: project-folder/src and project-folder/distrib. These
subfolders contain the following files.

Files in the Project Subfolders

Subfolder Files Description

ComponentName
_mcc_component_data.cs

C# component data
file

src

ClassName1.cs ...
ClassNameN.cs

C# wrapper class file

ComponentName.dll .NET component
assembly

ComponentName.pdb .NET component
debug file (Debug
builds only)

ComponentName.xml .NET component
XML documentation
file

distrib

MWArray.xml
component_name.xml
component_name_overview.html

Documentation
template files.
See “Using
Enhanced XML
Documentation
Files” on page 2-26.

Note When you build your project, you can specify the compilation of a
private or shared assembly. A private assembly is copied to an application
subfolder and is owned exclusively by the application. A shared assembly
usually resides in the Global Assembly Cache, and can be directly
referenced by multiple applications.

1-15

1 Getting Started

Packaging Your Component (Optional)
Bundling the .NET component with additional files you can distribute to
users is called packaging. You perform this step using the packaging function
of deploytool. Alternately, copy the contents of the distrib folder and the
MCR Installer to a local folder of your choice. If you are creating a shared
component and want to include additional code with the component, you must
perform this step.

1 On the Package tab, add the MATLAB Compiler Runtime (the MCR) by
clicking Add MCR.

2 Next, add others files useful for end users. The readme.txt file contains
important information about others files useful for end users. To package
additional files or folders, click Add file/directories, select the file or
folder you want to package, and click Open.

3 In the Deployment Tool, click the Packaging button ().

4 After packaging, the package resides in the distrib subfolder. On
Windows, the package is a self-extracting executable. On platforms other
than Windows, it is a .zip file. Verify that the contents of the distrib
folder contains the files you specified.

What Happens in the Packaging Process?. The package process zips the
following files into a single self-extracting executable, componentName.exe:

• componentName.dll

• componentName.xml

• componentName.pdb (if the Debug option is selected)

• MCRInstaller.exe (if the Include MCR option is selected)

• _install.bat (script run by the self-extracting executable)

1-16

Deploying a Component Using the Magic Square Example

How the MCR Is Shared Among Classes. The builder creates a single
MCR instance for each MATLAB Builder NE class in an application. This
MCR is reused and shared among all subsequent class instances within the
component, resulting in more efficient memory usage and eliminating the
MCR startup cost in each subsequent class instantiation. All class instances
share a single MATLAB workspace and share global variables in the M-files
used to build the component.

The following example creates a .NET component called mycomponent
containing a single .NET class named myclass with methods foo and bar.

If and when multiple instances of myclass are instantiated in an application,
only one MCR is initialized, and it is shared by all instances of myclass.

mcc -B 'dotnet:mycomponent,myclass,2.0,Private,local' foo.m bar.m

Copying the Package You Created
Copy the package that you created from the distrib folder to the local folder
of your choice or send them directly to the .NET programmer.

Using the Command Line to Create .NET Components
Instead of using the Deployment Tool to create .NET components, you can
use the mcc command.

The following sections describe the subset of mcc command options that you
need to create .NET components. The sections provide detailed mcc syntax
with examples.

To learn more about the mcc command and all of its options, see the MATLAB
Compiler documentation.

Command-Line Syntax Description
The following command defines the complete mcc command syntax with all
required and optional arguments used to create a .NET component. Brackets
indicate optional parts of the syntax.

mcc - W 'dotnet:component_name,class_name, 0.0|2.0,
Private|Encryption_Key_Path,local|remote' file1

1-17

1 Getting Started

[file2...fileN][class{class_name:file1 [,file2,...,fileN]},...
[-d output_dir_path] -T link:lib

Note For complete information about the mcc command, including the -W
option, see mcc in the function reference section of this user’s guide.

Using the .NET Bundle Files to Simplify the Command
To simplify the command line used to create .NET components, you can
use the .NET Builder bundle file, named dotnet, to make creating .NET
components easier. When using this bundle file, you must still pass in the
four parts of the -W argument text string, however, you do not have to specify
the -T option.

The following example creates a .NET component called mycomponent
containing a single .NET class named myclass with methods foo and bar.
When used with the -B option, the word dotnet specifies the name of the
predefined .NET Builder bundle file.

mcc -B 'dotnet:mycomponent,myclass,2.0,encryption_keyfile_path,local'
foo.m bar.m

In this example, the builder uses the .NET Framework version 2.0 to
compile the component into a shared assembly using the key file specified in
encryption_keyfile_path to sign the shared component.

Example: Creating a .NET Component Namespace
The following example creates a .NET component from two M-files foo.m
and bar.m.

mcc - B 'dotnet:mycompany.mygroup.mycomponent,myclass,0.0,Private,local'
foo.m bar.m

The example creates a .NET component named mycomponent that has the
following namespace: mycompany.mygroup. The component contains a single
.NET class, myclass, which contains methods foo and bar.

To use myclass, place the following statement in your code:

1-18

Deploying a Component Using the Magic Square Example

using mycompany.mygroup;

Example: Adding Multiple Classes to a Component
The following example creates a .NET component that includes more than
one class. This example uses the optional class{...} argument to the mcc
command.

mcc - B 'dotnet:mycompany.mycomponent,myclass,2.0,Private,local' foo.m bar.m

class{myclass2:foo2.m,bar2.m}

The example creates a .NET component named mycomponent with two classes:

• myclass has methods foo and bar

• myclass2 has methods foo2 and bar2

Magic Square Example: .NET Programmer Tasks
The following tasks are usually performed by the .NET programmer.

Key Tasks for the .NET Programmer

Task Reference

1. Ensure you have the needed files
from the MATLAB programmer
before proceeding.

“Gathering Files Needed for
Deployment” on page 1-20

2. Use the component in a .NET
application. Compile and run the
component to ensure it produces the
same results as your M-code.

“Using the Component in an
Application” on page 1-21

3. Archive and distribute the output
to end users.

“Distributing the Component to End
Users” on page 1-24

4. Integrate classes generated by the
MATLAB Builder NE product into
existing .NET applications.

“Integrating .NET Classes
Generated by MATLAB into a
.NET Application” on page 1-24

5. Verify your .NET application
works as expected in your end user’s
deployment environment.

“Building and Testing the .NET
Application” on page 1-29

1-19

1 Getting Started

Gathering Files Needed for Deployment
Before beginning, verify you have access to the following files, created by
the MATLAB programmer in “Copying the Package You Created” on page
1-17. The following files are required to deploy to users who do not have a
copy of MATLAB installed:

• MCR Installer. For locations of all MCR Installers, run the mcrinstaller
command.

• readme.txt

See “Packaging Your Component (Optional)” on page 1-16 for more
information about these files. You will also want to communicate the location
of the MWArray Class Library Reference. You can also browse to this library
from the MATLAB Builder NE help tree (left pane of MATLAB Product Help).

How Component Deployment Works. To deploy the component, run the
MCR installer. The installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

Note Since installing the MCR requires write access to the system registry,
you must have administrator privileges to run the MCR Installer.

Note On target machines where the MCR Installer is
run, the MCR Installer puts the MWArray assembly in
installation_folder\toolbox\dotnetbuilder\runtime\architecture
\version_number.

The MCR Installer uses a standard Microsoft installation file that provides
the following features:

1-20

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Deploying a Component Using the Magic Square Example

• Integrates with Add/Remove Programs in the Control Panel

• Checks software prerequisites before installation

• Checks for proper user permissions

• Rolls back the system to its prior state on installation failure

• Supports component versioning

Using the Component in an Application

1 Write source code for an application that uses the .NET component created
in “Building Your Component” on page 1-13.

The C# source code for the sample application for this example is in
MagicSquareExample\MagicSquareCSApp\MagicSquareApp.cs.

The program listing is shown here.

Tip Although MATLAB Builder NE generates C# code for the MagicSquare
component and the sample application is in C#, applications that use the
component do not need to be coded in C#. You can access the component
from any CLS-compliant .NET language. For examples, see Chapter 4,
“Sample Applications (Microsoft® Visual Basic .NET)”.

MagicSquareApp.cs

// ***

//

// MagicDemoApp.cs

//

// This file is an example application for the MATLAB Builder NE product.

//

// Copyright 2001-2009 The MathWorks, Inc.

//

// ***

using System;

1-21

1 Getting Started

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using MagicDemoComp;

namespace MathWorks.Demo.MagicSquareApp

{

/// <summary>

/// The MagicSquareApp demo class computes a magic square of the user-specified size.

/// </summary>

/// <remarks>

/// args[0] - a positive integer representing the array size.

/// </remarks>

class MagicDemoApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

MWNumericArray arraySize= null;

MWNumericArray magicSquare= null;

try

{

// Get user-specified command line arguments or set default

arraySize= (0 != args.Length) ? System.Double.Parse(args[0]) : 4;

// Create the magic square object

MagicSquare magic= new MagicSquare();

// Compute the magic square and print the result

magicSquare= (MWNumericArray)magic.makesquare((MWArray)arraySize);

Console.WriteLine("Magic square of order {0}\n\n{1}", arraySize, magicSquare);

1-22

Deploying a Component Using the Magic Square Example

// Convert the magic square array to a two-dimensional native double array

double[,] nativeArray= (double[,])magicSquare.ToArray(MWArrayComponent.Real);

Console.WriteLine("\nMagic square as native array:\n");

// Display the array elements:

for (int i= 0; i < (int)arraySize; i++)

for (int j= 0; j < (int)arraySize; j++)

Console.WriteLine("Element({0},{1})= {2}", i, j, nativeArray[i,j]);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

2 Build the application using Visual Studio® .NET.

Note In the project file for this example, the MWArray assembly and
the magic square component assembly have been prereferenced. Any
references preceded by an exclamation point require you to remove the
reference and rereference the affected assembly.

Note Microsoft .NET Framework version 2.0 is not supported by Visual
Studio 2003.

a Open the project file for the Magic Square example
(MagicSquareCSApp.csproj) in Visual Studio .NET.

1-23

1 Getting Started

b If necessary, add a reference to the MWArray component in
matlabroot\toolbox\dotnetbuilder\bin\
architecture\framework_version.

c If necessary, add a reference to the Magic Square component
(MagicSquareComp), which is in the distrib subfolder.

Distributing the Component to End Users
If you bundled the component as a self-extracting executable, paste it in a
folder on the development machine and run it. If you are using a .zip file
bundled with WinZip, unzip and extract the contents to the development
machine.

Integrating .NET Classes Generated by MATLAB into a .NET
Application

• “Classes and Methods” on page 1-24

• “Component and Class Naming Conventions” on page 1-25

• “Versioning” on page 1-25

• “Managing Data Conversion Issues with MATLAB® Builder NE Data
Conversion Classes” on page 1-26

• “Automatic Casting to MATLAB Types” on page 1-27

• “Adding Fields to Data Structures and Data Structure Arrays” on page 1-28

• “About MATLAB Array Indexing” on page 1-28

• “Accessing Your Component On Another Computer” on page 1-28

Classes and Methods. The builder project contains the files and settings
needed by the MATLAB Builder NE product to create a deployable .NET
component. A project specifies information about classes and methods,
including the MATLAB functions to be included.

The builder transforms MATLAB functions that are specified in the
component’s project to methods belonging to a managed class.

1-24

http://www.winzip.com

Deploying a Component Using the Magic Square Example

When creating a component, you must provide one or more class names as
well as a component name. The component name also specifies the name of
the assembly that implements the component. The class name denotes the
name of the class that encapsulates MATLAB functions.

To access the features and operations provided by the MATLAB functions,
instantiate the managed class generated by the builder, and then call the
methods that encapsulate the MATLAB functions.

Component and Class Naming Conventions. Typically you should
specify names for components and classes that will be clear to programmers
who use your components. For example, if you are encapsulating many
MATLAB functions, it helps to determine a scheme of function categories and
to create a separate class for each category. Also, the name of each class
should be descriptive of what the class does.

The .NET Framework General Reference recommends the use of Pascal case
for capitalizing the names of identifiers of three or more characters. That
is, the first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized. For example:

MakeSquare

In contrast, MATLAB programmers typically use all lowercase for names
of functions. For example:

makesquare

By convention, the MATLAB Builder NE examples use Pascal case.

Valid characters are any alpha or numeric characters, as well as the
underscore (_) character.

Versioning. The builder supports the standard versioning capabilities
provided by the .NET Framework.

Note You can make side-by-side invocations of multiple versions of a
component within the same application only if they access the same version
of the MCR.

1-25

http://msdn.microsoft.com/library/default.asp?url=/library/

1 Getting Started

Managing Data Conversion Issues with MATLAB Builder NE Data
Conversion Classes. To support data conversion between managed types
and MATLAB types, the builder provides a set of data conversion classes
derived from the abstract class, MWArray.

When you invoke a method on a component, the input and output parameters
are a derived type of MWArray. To pass parameters, you can either instantiate
one of the MWArray subclasses explicitly, or, in many cases, pass the
parameters as a managed data type and rely on the implicit data conversion
feature of .NET Builder.

Overview of Classes and Methods in the Data Conversion Class
Hierarchy

The data conversion classes are built as a class hierarchy that represents the
major MATLAB array types.

Note See “Overview” on page 9-7 for an introduction to the classes and see
MWArray Class Library Reference (available online only) for details about
this class library.

The root of the hierarchy is the MWArray abstract class. The MWArray
class has the following subclasses representing the major MATLAB types:
MWNumericArray, MWLogicalArray, MWCharArray, MWCellArray, and
MWStructArray.

MWArray and its derived classes provide the following functionality:

• Constructors and destructors to instantiate and dispose of MATLAB arrays

• Properties to get and set the array data

• Indexers to support a subset of MATLAB array indexing

• Implicit and explicit data conversion operators

• General methods

1-26

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Deploying a Component Using the Magic Square Example

Advantage of Using Data Conversion Classes

The MWArray data conversion classes allow you to pass most native .NET
value types as parameters directly without using explicit data conversion.
There is an implicit cast operator for most native numeric and string types
that will convert the native type to the appropriate MATLAB array.

Automatic Casting to MATLAB Types.

Note Because the conversion process is automatic (in most cases), you do not
need to understand the conversion process to pass and return arguments with
MATLAB Builder NE components.

In most instances, if a native .NET primitive or array is used as an input
parameter in a C# program, the builder transparently converts it to an
instance of the appropriate MWArray class before it is passed on to the
component method. The builder can convert most CLS-compliant string,
numeric type, or multidimensional array of these types to an appropriate
MWArray type.

Note This conversion is transparent in C# applications, but might require
an explicit casting operator in other languages, for example, op_implicit
in Visual Basic®.

Here is an example. Consider the .NET statement:

result = theFourier.plotfft(3, data, interval);

In this statement the third argument, namely interval, is of the .NET
native type System.Double. The builder casts this argument to a MATLAB
1-by-1 double MWNumericArray type (which is a wrapper class containing a
MATLAB double array).

See “Data Conversion Rules” on page 9-4 for a list of all the data types that
are supported along with their equivalent types in the MATLAB product.

1-27

1 Getting Started

Note There are some data types commonly used in the MATLAB product
that are not available as native .NET types. Examples are cell arrays,
structure arrays, and arrays of complex numbers. Represent these array
types as instances of MWCellArray, MWStructArray, and MWNumericArray,
respectively.

Adding Fields to Data Structures and Data Structure Arrays. When
adding fields to data structures and data structure arrays, do so using
standard programming techniques. Do not use the set command as a
shortcut.

For examples of how to correctly add fields to data structures and data
structure arrays, see the programming examples in Chapter 3, “Sample
Applications (C#)” and Chapter 4, “Sample Applications (Microsoft® Visual
Basic .NET)”.

About MATLAB Array Indexing. .NET Builder provides indexers to
support a subset of MATLAB array indexing.

Note If each element in a large array returned by a .NET Builder component
is to be indexed, the returned MATLAB array should first be converted to
a native array using the toArray() method. This results in much better
performance.

Don’t keep the array in MATLAB type; convert it to a native array first. See
Chapter 1, “Getting Started” for an example of native type conversion.

Accessing Your Component On Another Computer. To implement your
.NET component on a computer other than the one on which it was built:

1 If the component is not already installed on the machine where you want
to develop your application, run the self-extracting executable that you
created in “Deploying a Component Using the Magic Square Example”
on page 1-9.

1-28

Deploying a Component Using the Magic Square Example

This step is not necessary if you are developing your application on the
same machine where you created the .NET component.

2 Reference the .NET component in your Microsoft® Visual Studio® project or
from the command line of a CLS-compliant compiler.

You must also add a reference to the MWArray component in
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version.

3 Instantiate the generated .NET Builder classes and call the class methods
as you would with any .NET class. To marshal data between the native
.NET types and the MATLAB array type, you need to use either the
MWArray data conversion classes or the MWArray native API. See MWArray
Class Library Reference (available online only) for details about the
MWArray API for this class library.

Building and Testing the .NET Application

1 Build and test the .NET application as you would any application.

2 Create an application installation package for end users that includes
the files required for the .NET Builder components that encapsulate the
MATLAB functions.

1-29

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html
file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

1 Getting Started

Next Steps
After you create and distribute the initial application, you probably want to
continue to enhance it. Pointers to documentation detailing some of the more
common tasks you perform as you develop your application are listed here.

Writing .NET applications that
can access .NET methods that
encapsulate M-code

Chapter 2, “Using Components
Created by the MATLAB® Builder
NE Product”

Sample applications that access
methods developed in MATLAB

Chapter 3, “Sample Applications
(C#)” and Chapter 4, “Sample
Applications (Microsoft® Visual
Basic .NET)”

Deploying .NET components over
the Web

Chapter 5, “Deploying a MATLAB
Figure Over the Web Using
WebFigures”Creating a remotable component

or learning about remotable
components

Chapter 7, “Sharing Components
Across Distributed Applications
Using .NET Remoting”

1-30

2

Using Components Created
by the MATLAB Builder
NE Product

To use a .NET component built and packaged by the MATLAB Builder NE
product, perform the following tasks.

• “Installing the Components on the Development Machine ” on page 2-2

• “Specifying Component Assembly and Namespace” on page 2-3

• “Creating an Instance of a Class” on page 2-4

• “Using Dispose to Explicitly Free Resources” on page 2-5

• “Improving Data Access Using the MCR User Data Interface and
MATLAB® Builder NE” on page 2-6

• “Dynamically Specifying Run-Time Options to the MCR” on page 2-11

• “Accessing Real or Imaginary Components Within Complex Arrays” on
page 2-14

• “Blocking Execution of a Console Application that Creates Figures” on
page 2-17

• “Using MATLAB API Functions in a C# Program” on page 2-20

• “Handling Errors” on page 2-22

• “Overriding Default CTF Archive Embedding for Components Using the
MCR Component Cache” on page 2-24

• “Using Enhanced XML Documentation Files” on page 2-26

2 Using Components Created by the MATLAB® Builder™ NE Product

Installing the Components on the Development Machine
To use components on a particular development machine, you deploy .dll file
(componentname.dll) along with the MCR (if not already installed). You must
do this even if you are not using the packaging process outlined in “Packaging
Your Component (Optional)” on page 1-16.

1 Unpack and install the components on the machine.

2 Copy componentname.exe to a folder on the development machine, and
run it.

You must repeat these steps for each machine where the component will
be used.

2-2

Specifying Component Assembly and Namespace

Specifying Component Assembly and Namespace
To use the component assembly generated using the MATLAB Builder NE
product from the client application, you must

• Reference the MATLAB data conversion assembly and specify the
namespace in your application, as shown:

using MathWorks.MATLAB.NET.Arrays;

• Reference the namespace for the builder assembly generated for your
particular component and specify the namespace in your application, for
example:

using MyComponentName;

Note The builder supports nested namespaces.

Suppose you named the component you created MyComponentName and you
want to use it in a program named MyApp.cs. Here are the statements to use
at the beginning of MyApp.cs:

using System;
using MathWorks.MATLAB.NET.Arrays;
using MyComponentName;

2-3

2 Using Components Created by the MATLAB® Builder™ NE Product

Creating an Instance of a Class
As with any .NET class, you need to create an instance of the classes you
create with the MATLAB Builder NE product before you can use them in
your program.

Suppose you build a component with a class named MyComponentClass. Here
is an example of creating an instance of that class:

MyComponentClass classInstance = new MyComponentClass();

See “How the MCR Is Shared Among Classes” on page 1-17 for information
about what happens when you instantiate classes.

2-4

Using Dispose to Explicitly Free Resources

Using Dispose to Explicitly Free Resources

Note As of R2009b, native memory management for mxArray is automatically
handled by .NET’s CLR memory manager. There is no longer a reason to
manually disable native memory management when working with mxArray.
Calls to disable memory management will result in a null operation.

Usually the Disposemethod is called from a finally section in a try-finally
block as you can see in the following example:

try
{

/* Allocate a huge array */
MWNumericArray array = new MWNumericArray(1000,1000);

.

. (use the array)

.
}

finally
{

/* Explicitly dispose of the managed array and its */
/* native resources */

if (null != array)
{

array.Dispose();
}

}

The statement array.Dispose() frees the memory allocated by both the
managed wrapper and the native MATLAB array.

The MWArray class provides two disposal methods: Dispose and the static
method DisposeArray. The DisposeArray method is more general in that it
disposes of either a single MWArray or an array of arrays of type MWArray.

2-5

2 Using Components Created by the MATLAB® Builder™ NE Product

Improving Data Access Using the MCR User Data Interface
and MATLAB Builder NE

This feature allows data to be shared between an MCR instance, the M-code
running on that MCR, and the wrapper code that created the MCR. Through
calls to the MCR User Data interface API, you access MCR data by creating
a per-MCR-instance associative array of mxArrays, consisting of a mapping
from string keys to mxArray values. Reasons for doing this include, but are
not limited to:

• You need to supply run-time configuration information to a client
running an application created with the Parallel Computing Toolbox™
software. Configuration information may be supplied (and changed) on a
per-execution basis. For example, two instances of the same application
may run simultaneously with different configuration files.

• You want to initialize the MCR with constant values that can be accessed
by all your M applications.

• You want to set up a global workspace — a global variable or variables that
MATLAB and your client can access.

• You want to store the state of any variable or group of variables.

MATLAB Builder NE software supports a per-MCR instance state access
through an object-oriented API. Unlike MATLAB Compiler, access to a
per-MCR instance state is optional, rather than on by default. You can access
this state by adding setmcruserdata.m and getmcruserdata.m to your
deployment project or by specifying them on the command line.

For more information, see“Improving Data Access Using the MCR User Data
Interface” in the MATLAB Compiler User’s Guide.

Code Snippets
The following code snippets demonstrate storing and retrieving the MCR
state while working with the MagicMatrix function.

MagicMatrix Function

function magicmatrix

2-6

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ NE

key = 'MagicMatrix';
m = getmcruserdata(key);
disp(m);
m = m + 1;
setmcruserdata(key, m);

Building the MagicMatrix Component

mcc -Ngv -W dotnet:MagicMatrixComponent,MagicMatrix -T link:lib \
magicmatrix.m setmcruserdata.m getmcruserdata.m

Calling setmcruserdata

// Create the key and the data
string key = "MagicMatrix";
double[,] magicData = { {8, 1, 6},

{3, 5, 7},
{4, 9, 2} };

// Create an instance of the component created by the builder
MagicMatrix m = new MagicMatrix();

// Store a magic matrix under the key "MagicMatrix"
m.setmcruserdata(key, (MWNumericArray)magicData);

Calling getmcruserdata

// Create the key, declare a variable to receive the value
String key = "MagicMatrix";
Object[] result = null;

// Create the component class (and the associated MCR instance)
m = new magicmatrix();

// Retrieve the value stored under the key in the map owned by the MCR
// associated with the component m.
result = m.getmcruserdata(1, key);

Example
The following is an end-to-end example showing how to build, run, and work
with the magicmatrix application and the MCR User Data interface API. This

2-7

2 Using Components Created by the MATLAB® Builder™ NE Product

function retrieves the numeric matrix stored under the key MagicMatrix,
adds 1 to it and stores the result back into the per-MCR instance data map,
overwriting the previous value.

MagixMatrix Function

function magicmatrix
key = 'MagicMatrix';
m = getmcruserdata(key);
disp(m);
m = m + 1;
setmcruserdata(key, m);

Building

This command assumes the existence of a component named
MagicMatrixComponent and a user-written main program in udata.cs.

C:\WINNT\Microsoft.NET\Framework\v2.0.50727\csc.exe \

/reference:magicmatrixComponent.dll \

/reference:%MWE_INSTALL%\toolbox\dotnetbuilder\bin\win32\v2.0\MWArray.dll udata.cs

Executing

C:\> udata.exe

2-8

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ NE

udata.cs

// udata.cs
// Demonstrate the MCR User Data interface API in the builder.
using System;

using MathWorks.MATLAB.NET.Utility;
using MathWorks.MATLAB.NET.Arrays;

using MagicMatrixComponent;

namespace MathWorks.Demo.UserData
{
class MagicMatrixTest
{

[STAThread]
static void Main(string[] args)
{

string key = "MagicMatrix";
MWArray result = null;

try
{

double[,] magicData = { {8, 1, 6},
{3, 5, 7},
{4, 9, 2} };

// Create an instance of the component
// created by the builder
MagicMatrix m = new MagicMatrix();

// Call the functions exported by the component, using
// per-MCR instance state to communicate between
// the C# wrapper code and the executing M-functions.
//
// First, store a magic matrix under the key "MagicMatrix"
m.setmcruserdata(key, (MWNumericArray)magicData);

// Add 1 to the magic matrix, display it, and save
// the new value in the per-MCR instance data.

2-9

2 Using Components Created by the MATLAB® Builder™ NE Product

m.magicmatrix();

// Retrieve the new value stored under "MagicMatrix."
result = m.getmcruserdata(key);

// Print the result matrix
Console.WriteLine(result);

}
catch(Exception exception)
{

Console.WriteLine("Error: {0}", exception);
}

}
}
}

2-10

Dynamically Specifying Run-Time Options to the MCR

Dynamically Specifying Run-Time Options to the MCR

In this section...

“What Run-Time Options Can You Specify?” on page 2-11

“Getting MCR Option Values Using MWMCR” on page 2-11

What Run-Time Options Can You Specify?
As of R2009a, you can pass MCR run-time options -nojvm and -logfile
to MATLAB Builder NE from a client application using the assembly-level
attributes NOJVM and LOGFILE. you can retrieve values of these attributes by
calling methods of the MWMCR class to access MCR attributes and MCR state.

Getting MCR Option Values Using MWMCR
The MWMCR class provides several methods to get MCR option values. The
following table lists methods supported by this class.

MWMCR Method Purpose

MWMCR.IsMCRInitialized() Returns true if MCR is initialized,
otherwise returns false.

MWMCR.IsMCRJVMEnabled() Returns true if MCR is launched
with Java Virtual Machine (JVM),
otherwise returns false.

MWMCR.GetMCRLogFileName() Returns the name of the log file
passed with the LOGFILE attribute.

Default MCR Options
If you pass no MCR options (you provide no attributes), the MCR is launched
with default option values:

MCR Run-Time Option Default Option Values

Java Virtual Machine (JVM) NOJVM(false)

Log file usage LOGFILE(null)

2-11

2 Using Components Created by the MATLAB® Builder™ NE Product

These options are all write-once, read-only properties.

Use the following attributes to represent the MCR options you want to modify.

MWMCR Attribute Purpose

NOJVM Lets users launch MCR with or
without a JVM. It takes a Boolean
as input. For example, NOJVM(true)
launches MCR without a JVM.

LOGFILE Lets users pass the name of
a log file, taking the file
name as input. For example,
LOGFILE("logfile3.txt") .

Example: Passing MCR Option Values from a C# Application.
Following is an example of how MCR option values are passed from a
client-side C# application:

[assembly: NOJVM(false), LOGFILE("logfile3.txt")]
namespace App1
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("In side main...");
try
{

myclass cls = new myclass();
cls.hello();
Console.WriteLine("Done!!");
Console.ReadLine();

}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

}
}

2-12

Dynamically Specifying Run-Time Options to the MCR

}

2-13

2 Using Components Created by the MATLAB® Builder™ NE Product

Accessing Real or Imaginary Components Within Complex
Arrays

In this section...

“Extracting Real or Imaginary Components” on page 2-14

“Returning Values with Component Indexing” on page 2-14

“Assigning Values with Component Indexing” on page 2-15

“Converting MATLAB Arrays to .NET Arrays Using Component Indexing”
on page 2-15

Extracting Real or Imaginary Components
When you access a complex array (an array made up of both real and
imaginary data), you extract both real and imaginary parts (called
components) by default. This method call, for example, extracts both real
and imaginary components:

MWNumericArray complexResult= complexDouble[1, 2];

It is also possible, when calling a method to return or assign a value, to
extract only the real or imaginary component of a complex matrix. To do this,
call the appropriate component indexing method.

This section describes how to use component indexing when returning or
assigning a value, and also describes how to use component indexing to
convert MATLAB arrays to .NET arrays using the ToArray or ToVector
methods.

Returning Values with Component Indexing
The following section illustrates how to return values from full and sparse
arrays using component indexing.

Implementing Component Indexing on Full Complex Numeric
Arrays
To return the real or imaginary component from a full complex numeric array,
call the .real or .imaginary method on MWArrayComponent as follows:

2-14

Accessing Real or Imaginary Components Within Complex Arrays

complexResult= complexDouble[MWArrayComponent.Real, 1, 2];

complexResult= complexDouble[MWArrayComponent.Imaginary, 1, 2];

Implementing Component Indexing on Sparse Complex
Numeric Arrays (Microsoft Visual Studio 8 and Later)
To return the real or imaginary component of a sparse complex numeric array,
call the .real or .imaginary method MWArrayComponent as follows:

complexResult= sparseComplexDouble[MWArrayComponent.Real, 4, 3];

complexResult = sparseComplexDouble[MWArrayComponent.Imaginary, 4, 3];

Assigning Values with Component Indexing
The following section illustrates how to assign values to full and sparse arrays
using component indexing.

Implementing Component Indexing on Full Complex Numeric
Arrays
To assign the real or imaginary component to a full complex numeric array,
call the .real or .imaginary method MWArrayComponent as follows:

matrix[MWArrayComponent.Real, 2, 2]= 5;

matrix[MWArrayComponent.Imaginary, 2, 2]= 7:

Converting MATLAB Arrays to .NET Arrays Using
Component Indexing
The following section illustrates how to use the ToArray and ToVector
methods to convert full and sparse MATLAB arrays and vectors to .NET
arrays and vectors respectively.

Converting MATLAB Arrays to .NET Arrays
To convert MATLAB arrays to .NET arrays call the toArray method with
either the .real or .imaginary method, as needed, on MWArrayComponent as
follows:

Array nativeArray_real= matrix.ToArray(MWArrayComponent.Real);

Array nativeArray_imag= matrix.ToArray(MWArrayComponent.Imaginary);

2-15

2 Using Components Created by the MATLAB® Builder™ NE Product

Converting MATLAB Arrays to .NET Vectors
To convert MATLAB vectors to .NET vectors (single dimension arrays) call the
.real or .imaginary method, as needed, on MWArrayComponent as follows:

Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Real);

Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Imaginary);

2-16

Blocking Execution of a Console Application that Creates Figures

Blocking Execution of a Console Application that Creates
Figures

In this section...

“WaitForFiguresToDie Method” on page 2-17

“Code Fragment: Using WaitForFiguresToDie to Block Execution” on page
2-18

WaitForFiguresToDie Method
The MATLAB Builder NE product adds a WaitForFiguresToDie method to
each .NET class that it creates. WaitForFiguresToDie takes no arguments.
Your application can call WaitForFiguresToDie any time during execution.

The purpose of WaitForFiguresToDie is to block execution of a calling
program as long as figures created in encapsulated M-code are displayed.
Typically you use WaitForFiguresToDie when:

• There are one or more figures open that were created by a .NET component
created by the builder.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When WaitForFiguresToDie is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Tip Consider using the console.readline method when possible as it
accomplishes much of this functionality in a standardized manner.

2-17

2 Using Components Created by the MATLAB® Builder™ NE Product

Caution Use care when calling the WaitForFiguresToDie method. Calling
this method from an interactive program, such as Microsoft Excel, can hang
the application. This method should be called only from console-based
programs.

Code Fragment: Using WaitForFiguresToDie to Block
Execution
The following example illustrates using WaitForFiguresToDie from a .NET
application. The example uses a .NET component created by the MATLAB
Builder NE product; the object encapsulates M-code that draws a simple plot.

1 Create a work folder for your source code. In this example, the folder is
D:\work\plotdemo.

2 In this folder, create the following M-file:

drawplot.m

function drawplot()
plot(1:10);

3 Use MATLAB Builder NE to create a .NET component with the following
properties:

Component name Figure

Class name Plotter

4 Create a .NET program in a file named runplot with the following code:

using Figure.Plotter;

public class Main {
public static void main(String[] args) {

try {
plotter p = new Plotter();
try {

p.showPlot();

2-18

Blocking Execution of a Console Application that Creates Figures

p.WaitForFiguresToDie();
}

catch (Exception e) {
console.writeline(e);

}
}

}
}

5 Compile the application.

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to WaitForFiguresToDie,
comment out the call, rebuild the application, and run it. In this case, the
figure is drawn and is immediately destroyed as the application exits.

2-19

2 Using Components Created by the MATLAB® Builder™ NE Product

Using MATLAB API Functions in a C# Program

In this section...

“Overview” on page 2-20

“Example: Using functions engOpen and engEvalString from the MATLAB
Engine API in a C# Program” on page 2-20

Overview
You include functions from MATLAB APIs, such as the Engine API, in
your C# code by using the DllImport attribute to import functions from
libeng.dll (written in unmanaged C) and then declaring those functions as
C# equivalents. The imported Engine functions are called using the P/Invoke
mechanism, as illustrated in the example below.

Example: Using functions engOpen and
engEvalString from the MATLAB Engine API in a C#
Program

1 Open Microsoft Visual Studio .NET.

2 Select File > New > Project.

3 Select Visual C# Applications in the left pane and Console Application
in the right pane. Click OK.

4 Auto-generated code appears. Replace the auto-generated code with this
code and run:

using System;
using System.Text;
using System.Runtime.InteropServices;

namespace ConsoleApplication8
{

class MatlabEng
{

[DllImport("libeng.dll")]

2-20

Using MATLAB API Functions in a C# Program

static extern IntPtr engOpen(string startcmd);

[DllImport("libeng.dll")]
static extern IntPtr engEvalString(IntPtr engine,

string Input);

public MatlabEng()
{

IntPtr engine;
engine = engOpen(null);
if (engine == IntPtr.Zero)

throw new NullReferenceException("Failed to
Initialize Engine");

engEvalString(engine, "surf(peaks)");
}

~MatlabEng()
{
}

}

class StartProg
{

public static void Main()
{

MatlabEng mat = new MatlabEng();
}

}
}

2-21

2 Using Components Created by the MATLAB® Builder™ NE Product

Handling Errors
As with managed code, any errors that occur during execution of an M-function
or during data conversion are signaled by a standard .NET exception.

Like any other .NET application, an application that calls a method generated
by the MATLAB Builder NE product can handle errors by either

• Catching and handling the exception locally

• Allowing the calling method to catch it

Here are examples for each way of handling errors.

In the GetPrimes example the method itself handles the exception.

public double[] GetPrimes(int n)
{
MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
return (double[])(MWNumericArray)primes).

ToVector(MWArrayComponent.Real);
}

catch (Exception ex)
{
Console.WriteLine("Exception: {0}", ex);
return new double[0];
}

}

In the next example, the method that calls myprimes does not catch the
exception. Instead, its calling method (that is, the method that calls the
method that calls myprimes) handles the exception.

public double[] GetPrimes(int n)
{

MWArray primes= null;

2-22

Handling Errors

MyPrimesClass myPrimesClass= null;
try

{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
return (double[])(MWNumericArray)primes).
ToVector(MWArrayComponent.Real);

}

catch (Exception e)
{

throw;
}

}

2-23

2 Using Components Created by the MATLAB® Builder™ NE Product

Overriding Default CTF Archive Embedding for Components
Using the MCR Component Cache

As of R2008b, CTF data is automatically embedded directly in .NET and COM
components by default. In order to extract the CTF archive manually, you
must build the component using the mcc -C option.

If you do not use the mcc -C option to generate a separate CTF file, you can
add environment variables to specify various options, such as:

• Defining the location where you want the CTF archive to be extracted

• Adding diagnostic error printing options that can be used when extracting
the CTF, for troubleshooting purposes

• Tuning the MCR component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the CTF
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Not applicable

MCR_CACHE_VERBOSE When set, this variable prints
details about the component
cache for diagnostic reasons.
This can be very helpful
if problems are encountered
during CTF archive extraction.

Not applicable

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this
variable is 32M (megabytes).
This may, however, be changed
after you have set the variable
the first time. Edit the file
.max_size, which resides in
the file designated by running

2-24

Overriding Default CTF Archive Embedding for Components Using the MCR Component Cache

Environment Variable Purpose Notes

the mcrcachedir command,
with the desired cache size
limit.

2-25

2 Using Components Created by the MATLAB® Builder™ NE Product

Using Enhanced XML Documentation Files
Every MATLAB® Builder NE component includes a readme.txt file in the
src and distrib directories. This file outlines the contents of auto-generated
documentation templates included with your built component. The
documentation templates are HTML and XML files that can be read and
processed by any number of third-party tools.

• MWArray.xml — This file describes the MWArray data conversion classes
and their associated methods. Documentation for MWArray classes and
their methods are available here.

• component_name.xml — This file contains the code comments for your
component. Using a third party documentation tool, you can combine this
file with MWArray.xml to produce a complete documentation file that can be
packaged with the component assembly for distribution to end users.

• component_name_overview.html — Optionally include this file in the
generated documentation file. It contains an overview of the steps needed
to access the component and how to use the data conversion classes,
contained in the MWArray class hierarchy, to pass arguments to the
generated component and return the results.

2-26

3

Sample Applications (C#)

Note The examples for the MATLAB Builder NE product are in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber, where
matlabroot is the folder where the MATLAB product is installed and
VSversionnumber specifies the version of Microsoft Visual Studio .NET you
are using (in this case VS8). If you have Microsoft Visual Studio .NET
installed, you can load projects for all the examples by opening the solution
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\NET
\DotNetExamples.sln.

• “Simple Plot Example” on page 3-2

• “Passing Variable Arguments” on page 3-7

• “Spectral Analysis Example” on page 3-13

• “Matrix Math Example” on page 3-20

• “Phonebook Example” on page 3-28

Note In addition to these examples, see “Deploying a Component Using
the Magic Square Example” on page 1-9 for a simple example that gets you
started using the MATLAB Builder NE product.

3 Sample Applications (C#)

Simple Plot Example

In this section...

“Purpose” on page 3-2

“Procedure” on page 3-2

Purpose
The drawgraph function displays a plot of input parameters x and y. The
purpose of the example is to show you how to:

• Use the MATLAB Builder NE product to convert a MATLAB function
(drawgraph) to a method of a .NET class (Plotter) and wrap the class
in a .NET component (PlotComp).

• Access the component in a C# application (PlotApp.cs) by instantiating
the Plotter class and using the MWArray class library to handle data
conversion.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Build and run the PlotCSApp application, using the Visual Studio .NET
development environment.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\PlotExample

b At the MATLAB command prompt, change folder to the new
PlotExample\PlotComp subfolder in your work folder.

3-2

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Simple Plot Example

2 Write the drawgraph function as you would any MATLAB function.

This code is already in your work folder in
PlotExample\PlotComp\drawgraph.m.

3 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

4 Build the .NET component. See the instructions in “Building Your
Component” on page 1-13 for more details. Use the following information:

Project Name PlotComp

Class Name Plotter

File to compile drawplot.m

5 Write source code for a C# application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\PlotExample
\PlotCSApp\PlotApp.cs.

The program listing is shown here.

PlotApp.cs

// ***

//

// PlotApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a component

// that displays a MATLAB figure window.

//

// Copyright 2001-2008 The MathWorks, Inc.

//

// ***

using System;

3-3

3 Sample Applications (C#)

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using PlotComp;

namespace MathWorks.Examples.PlotApp

{

/// <summary>

/// This application demonstrates plotting x-y data by graphing a simple

/// parabola into a MATLAB figure window.

/// </summary>

class PlotCSApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

try

{

const int numPoints= 10; // Number of points to plot

// Allocate native array for plot values

double [,] plotValues= new double[2, numPoints];

// Plot 5x vs x^2

for (int x= 1; x <= numPoints; x++)

{

plotValues[0, x-1]= x*5;

plotValues[1, x-1]= x*x;

}

// Create a new plotter object

Plotter plotter= new Plotter();

// Plot the two sets of values - Note the ability to cast the native array to a MATLAB numeric array

3-4

Simple Plot Example

plotter.drawgraph((MWNumericArray)plotValues);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

The program does the following:

• Creates two arrays of double values

• Creates a Plotter object.

• Calls the drawgraph method to plot the equation using the MATLAB
plot function.

• Uses MWNumericArray to represent the data needed by the drawgraph
method to plot the equation.

• Uses a try-catch block to catch and handle any exceptions.

The statement

Plotter plotter= new Plotter();

creates an instance of the Plotter class, and the statement

plotter.drawgraph((MWNumericArray)plotValues);

3-5

3 Sample Applications (C#)

explicitly casts the native plotValues to MWNumericArray and then calls
the method drawgraph.

6 Build the PlotCSApp application using Visual Studio .NET.

a The PlotCSApp folder contains a Visual Studio .NET project file for this
example. Open the project in Visual Studio .NET by double-clicking
PlotCSApp.csproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking PlotCSApp.csproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c Add or, if necessary, fix the location of a reference
to the PlotComp component which you built in a
previous step. (The component, PlotComp.dll, is in the
\PlotExample\PlotComp\x86\V2.0\Debug\distrib subfolder of your
work area.)

7 Build and run the application in Visual Studio .NET.

3-6

Passing Variable Arguments

Passing Variable Arguments

Note This example is similar to “Simple Plot Example” on page 3-2, except
that the MATLAB function to be encapsulated takes a variable number of
arguments instead of just one.

The purpose of the example is to show you the following:

• How to use the builder to convert a MATLAB function, drawgraph, which
takes a variable number of arguments, to a method of a .NET class
(Plotter) and wrap the class in a .NET component (VarArgComp). The
drawgraph function (which can be called as a method of the Plotter class)
displays a plot of the input parameters.

• How to access the component in a C# application (VarArgApp.cs) by
instantiating the Plotter class and using MWArray to represent data.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• How to build and run the VarArgDemoApp application, using the Visual
Studio .NET development environment.

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\VarArgExample

b At the MATLAB command prompt, cd to the new VarArgExample
subfolder in your work folder.

2 Write the MATLAB functions as you would any MATLAB function.

3-7

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

3 Sample Applications (C#)

The code for the functions in this example is as follows:

drawgraph.m

function [xyCoords] = DrawGraph(colorSpec, varargin)

...

numVarArgIn= length(varargin);

xyCoords= zeros(numVarArgIn, 2);

for idx = 1:numVarArgIn

xCoord = varargin{idx}(1);

yCoord = varargin{idx}(2);

x(idx) = xCoord;

y(idx) = yCoord;

xyCoords(idx,1) = xCoord;

xyCoords(idx,2) = yCoord;

end

xmin = min(0, min(x));

ymin = min(0, min(y));

axis([xmin fix(max(x))+3 ymin fix(max(y))+3])

plot(x, y, 'color', colorSpec);

extractcoords.m

function [varargout] = ExtractCoords(coords)

%EXTRACTCOORDS Extracts a variable number of two element x and y

% coordinate vectors from a two column array

% [VARARGOUT] = EXTRACTCOORDS(COORDS) Extracts x,y coordinates

$ from a two column array

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

3-8

Passing Variable Arguments

% $Revision: 1.1.4.49 $ $Date: 2009/07/09 17:34:59 $

for idx = 1:nargout

varargout{idx}= coords(idx,:);

end

This code is already in your work folder in /VarArgExample/VarArgComp/.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

4 Build the .NET component. See the instructions in “Building Your
Component” on page 1-13 for more details. Use the following information:

Project Name VarArgComp

Class Name Plotter

File to compile extractcoords.m

5 Write source code for an application that accesses the component.

The sample application for this example is in
VarArgExample\VarArgCSApp\VarArgApp.cs.

The program listing is shown here.

VarArgApp.cs

// ***

//

//VarArgApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a component

// with a variable number of input and output arguments.

//

// Copyright 2001-2008 The MathWorks, Inc.

//

// ***

3-9

3 Sample Applications (C#)

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using VarArgComp;

namespace MathWorks.Examples.VarArgApp

{

/// <summary>

/// This application demonstrates how to call components having methods with varargin/vargout arguments.

/// </summary>

class VarArgApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

// Initialize the input data

MWNumericArray colorSpec= new double[]{0.9, 0.0, 0.0};

MWNumericArray data= new MWNumericArray(new int[,]{{1,2},{2,4},{3,6},{4,8},{5,10}});

MWArray[] coords= null;

try

{

// Create a new plotter object

Plotter plotter= new Plotter();

//Extract a variable number of two element x and y coordinate vectors from the data array

coords= plotter.extractcoords(5, data);

// Draw a graph using the specified color to connect the variable number of input coordinates.

// Return a two column data array containing the input coordinates.

data= (MWNumericArray)plotter.drawgraph(colorSpec, coords[0], coords[1], coords[2],coords[3], coords[4]);

3-10

Passing Variable Arguments

Console.WriteLine("result=\n{0}", data);

Console.ReadLine(); // Wait for user to exit application

// Note: You can also pass in the coordinate array directly.

data= (MWNumericArray)plotter.drawgraph(colorSpec, coords);

Console.WriteLine("result=\n{0}", data);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the
MWArray class library

• Creates a Plotter object

• Calls the extracoords and drawgraph methods

• Uses MWNumericArray to represent the data needed by the methods

• Uses a try-catch block to catch and handle any exceptions

The following statements are alternative ways to call the drawgraph
method:

data= (MWNumericArray)plotter.drawgraph(colorSpec,

coords[0], coords[1], coords[2],coords[3], coords[4]);

...

3-11

3 Sample Applications (C#)

data= (MWNumericArray)plotter.drawgraph((MWArray)colorSpec, coords);

6 Build the VarArgApp application using Visual Studio .NET.

a The VarArgCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
VarArgCSApp.csproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking VarArgCSApp.csproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c Add or, if necessary, fix the location of a reference to
the VarArgComp component which you built in a previous
step. (The component, VarArgComp.dll, is in the
\VarArgExample\VarArgComp\x86\v2.0\debug\distrib
subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

3-12

Spectral Analysis Example

Spectral Analysis Example

In this section...

“Purpose” on page 3-13

“Procedure” on page 3-15

Purpose
The purpose of the example is to show you the following:

• How to use the MATLAB Builder NE product to create a component
(SpectraComp) containing more than one class

• How to access the component in a C# application (SpectraApp.cs),
including use of the MWArray class hierarchy to represent data

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• How to build and run the application, using the Visual Studio .NET
development environment

The component SpectraComp analyzes a signal and graphs the result. The
class, SignalAnalyzer, performs a fast Fourier transform (FFT) on an
input data array. A method of this class, computefft, returns the results
of that FFT as two output arrays—an array of frequency points and the
power spectral density. The second class, Plotter, graphs the returned data
using the plotfft method. These two methods, computefft and plotfft,
encapsulate MATLAB functions.

The computefft method computes the FFT and power spectral density of the
input data and computes a vector of frequency points based on the length of
the data entered and the sampling interval. The plotfft method plots the
FFT data and the power spectral density in a MATLAB figure window. The
MATLAB code for these two methods resides in two M-files, computefft.m
and plotfft.m, which can be found in:

3-13

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

3 Sample Applications (C#)

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\SpectraExample\SpectraComp

computefft.m

function [fftData, freq, powerSpect] = ComputeFFT(data, interval)
%COMPUTEFFT Computes the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = COMPUTEFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% Language product.
% Copyright 2001-2003 The MathWorks, Inc.
if (isempty(data))

fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftData = fft(data);
freq = (0:length(fftData)-1)/(length(fftData)*interval);
powerSpect = abs(fftData)/(sqrt(length(fftData)));

plotfft.m

function PlotFFT(fftData, freq, powerSpect)
%PLOTFFT Computes and plots the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = PLOTFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% Language product.
% Copyright 2001-2003 The MathWorks, Inc.
len = length(fftData);

if (len <= 0)
return;

end
plot(freq(1:floor(len/2)), powerSpect(1:floor(len/2)))
xlabel('Frequency (Hz)'), grid on

3-14

Spectral Analysis Example

title('Power spectral density')

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\SpectraExample

b At the MATLAB command prompt, cd to the new SpectraExample
subfolder in your work folder.

2 Write the M-code that you want to access.

This example uses computefft.m and plotfft.m, which are already in
your work folder in SpectraExample\SpectraComp.

3 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

4 Build the .NET component. See the instructions in “Building Your
Component” on page 1-13 for more details. Use the following information:

Project Name SpectraComp

Class Names Plotter SignalAnalyzer

Files to compile computefft.m plotfft.m

5 Write source code for an application that accesses the component.

The sample application for this example is in
SpectraExample\SpectraCSApp\SpectraApp.cs.

The program listing is shown here.

3-15

3 Sample Applications (C#)

SpectraApp.cs

// ***

//

//SpectraApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a component

// with multiple classes.

//

// Copyright 2001-2008 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using SpectraComp;

namespace MathWorks.Examples.SpectraApp

{

/// <summary>

/// This application computes and plots the power spectral density of an input signal.

/// </summary>

class SpectraCSApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

try

{

const double interval= 0.01; // The sampling interval

const int numSamples= 1001; // The number of samples

3-16

Spectral Analysis Example

// Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

// random signal. Duration= 10; Sampling interval= 0.01

MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double, numSamples);

Random random= new Random();

// Initialize data

for (int idx= 1; idx <= numSamples; idx++)

{

double t= (idx-1)* interval;

data[idx]= Math.Sin(2.0*Math.PI*15.0*t) + Math.Sin(2.0*Math.PI*40.0*t) + random.NextDouble();

}

// Create a new signal analyzer object

SignalAnalyzer signalAnalyzer= new SignalAnalyzer();

// Compute the fft and power spectral density for the data array

MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

// Print the first twenty elements of each result array

int numElements= 20;

MWNumericArray resultArray= new MWNumericArray(MWArrayComplexity.Complex, MWNumericType.Double, numElements);

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[0])[idx];

}

Console.WriteLine("FFT:\n{0}\n", resultArray);

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[1])[idx];

}

Console.WriteLine("Frequency:\n{0}\n", resultArray);

for (int idx= 1; idx <= numElements; idx++)

3-17

3 Sample Applications (C#)

{

resultArray[idx]= ((MWNumericArray)argsOut[2])[idx];

}

Console.WriteLine("Power Spectral Density:\n{0}", resultArray);

// Create a new plotter object

Plotter plotter= new Plotter();

// Plot the fft and power spectral density for the data array

plotter.plotfft(argsOut[0], argsOut[1], argsOut[2]);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

The program does the following:

• Constructs an input array with values representing a random signal
with two sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data

• Instantiates a SignalAnalyzer object

• Calls the computefft method, which computes the FFT, frequency, and
the spectral density

• Instantiates a Plotter object

• Calls the plotfft method, which plots the data

• Uses a try/catch block to handle exceptions

3-18

Spectral Analysis Example

The following statement

MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real,
MWNumericType.Double, numSamples);

shows how to use the MWArray class library to construct a MWNumericArray
that is used as method input to the computefft function.

The following statement

SignalAnalyzer signalAnalyzer = new SignalAnalyzer();

creates an instance of the class SignalAnalyzer, and the following
statement

MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

calls the method computefft.

6 Build the SpectraApp application using Visual Studio .NET.

a The SpectraCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
SpectraCSApp.csproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking SpectraCSApp.csproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the
SpectraComp component which you built in a previous
step. (The component, SpectraComp.dll, is in the
\SpectraExample\SpectraComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

3-19

3 Sample Applications (C#)

Matrix Math Example

In this section...

“Purpose” on page 3-20

“Procedure” on page 3-21

“MATLAB Functions to Be Encapsulated” on page 3-26

“Understanding the MatrixMath Program” on page 3-27

Purpose
The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a component class

• How to access the component in a C# application (MatrixMathApp.cs)
by instantiating Factor and using the MWArray class library to handle
data conversion

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• How to build and run the MatrixMathApp application, using the Visual
Studio .NET development environment

This example builds a .NET component to perform matrix math. The example
creates a program that performs Cholesky, LU, and QR factorizations on a
simple tridiagonal matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

3-20

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Matrix Math Example

You supply the size of the matrix on the command line, and the program
constructs the matrix and performs the three factorizations. The original
matrix and the results are printed to standard output. You may optionally
perform the calculations using a sparse matrix by specifying the string
"sparse" as the second parameter on the command line.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\MatrixMathExample

b At the MATLAB command prompt, cd to the new MatrixMathExample
subfolder in your work folder.

2 Write the MATLAB functions as you would any MATLAB function.

The code for the cholesky, ludecomp, and qrdecomp functions is already in
your work folder in MatrixMathExample\MatrixMathComp\.

3 While in MATLAB, issue the following command to open the Deployment
Tool:

deploytool

4 Build the .NET component. See the instructions in “Building Your
Component” on page 1-13 for more details. Use the following information:

Project Name MatrixMathComp

Class Name Factor

Files to compile cholesky.m ludecomp.m
qrdecomp.m

5 Write source code for an application that accesses the component.

3-21

3 Sample Applications (C#)

The sample application for this example is in
MatrixMathExample\MatrixMathCSApp\MatrixMathApp.cs.

The program listing is shown here.

MatrixMathApp.cs

// ***

//

// MatrixMathApp.css

// This example demonstrates how to use MATLAB Builder NE to build a component

// that returns multiple results and optionally uses sparse matrices for

// arguments.

// Copyright 2001-2009 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using MatrixMathComp;

namespace MathWorks.Examples.MatrixMath

{

/// <summary>

/// This application computes cholesky, LU, and QR factorizations of a finite difference matrix of order N.

/// The order is passed into the application on the command line.

/// </summary>

/// <remarks>

/// Command Line Arguments:

/// <newpara></newpara>

/// args[0] - Matrix order(N)

/// <newpara></newpara>

/// args[1] - (optional) sparse; Use a sparse matrix

/// </remarks>

class MatrixMathApp

{

#region MAIN

3-22

Matrix Math Example

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

bool makeSparse= true;

int matrixOrder= 4;

MWNumericArray matrix= null; // The matrix to factor

MWArray argOut= null; // Stores single factorization result

MWArray[] argsOut= null; // Stores multiple factorization results

try

{

// If no argument specified, use defaults

if (0 != args.Length)

{

// Convert matrix order

matrixOrder= Int32.Parse(args[0]);

if (0 >= matrixOrder)

{

throw new ArgumentOutOfRangeException("matrixOrder", matrixOrder,

"Must enter a positive integer for the matrix order(N)");

}

makeSparse= ((1 < args.Length) && (args[1].Equals("sparse")));

}

// Create the test matrix. If the second argument is "sparse", create a sparse matrix.

matrix= (makeSparse)

? MWNumericArray.MakeSparse(matrixOrder, matrixOrder, MWArrayComplexity.Real, (matrixOrder+(2*(matrixOrder-1))))

: new MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double, matrixOrder, matrixOrder);

// Initialize the test matrix

for (int rowIdx= 1; rowIdx <= matrixOrder; rowIdx++)

for (int colIdx= 1; colIdx <= matrixOrder; colIdx++)

3-23

3 Sample Applications (C#)

if (rowIdx == colIdx)

matrix[rowIdx, colIdx]= 2.0;

else if ((colIdx == rowIdx+1) || (colIdx == rowIdx-1))

matrix[rowIdx, colIdx]= -1.0;

// Create a new factor object

Factor factor= new Factor();

// Print the test matrix

Console.WriteLine("Test Matrix:\n{0}\n", matrix);

// Compute and print the cholesky factorization using the single output syntax

argOut= factor.cholesky((MWArray)matrix);

Console.WriteLine("Cholesky Factorization:\n{0}\n", argOut);

// Compute and print the LU factorization using the multiple output syntax

argsOut= factor.ludecomp(2, matrix);

Console.WriteLine("LU Factorization:\nL Matrix:\n{0}\nU Matrix:\n{1}\n", argsOut[0], argsOut[1]);

MWNumericArray.DisposeArray(argsOut);

// Compute and print the QR factorization

argsOut= factor.qrdecomp(2, matrix);

Console.WriteLine("QR Factorization:\nQ Matrix:\n{0}\nR Matrix:\n{1}\n", argsOut[0], argsOut[1]);

Console.ReadLine();

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

finally

{

// Free native resources

if (null != (object)matrix) matrix.Dispose();

3-24

Matrix Math Example

if (null != (object)argOut) argOut.Dispose();

MWNumericArray.DisposeArray(argsOut);

}

}

#endregion

}

}

The statement

Factor factor= new Factor();

creates an instance of the class Factor.

The following statements call the methods that encapsulate the MATLAB
functions:

argOut= factor.cholesky((MWArray)matrix);
...
argsOut= factor.ludecomp(2, matrix);
...
argsOut= factor.qrdecomp(2, matrix);
...

Note See “Understanding the MatrixMath Program” on page 3-27 for
more details about the structure of this program.

6 Build the MatrixMathApp application using Visual Studio .NET.

a The MatrixMathCSApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking MatrixMathCSApp.csproj in Windows Explorer.
You can also open it from the MATLAB desktop by right-clicking
MatrixMathCSApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

3-25

3 Sample Applications (C#)

c If necessary, add (or fix the location of) a reference to the
MatrixMathComp component which you built in a previous
step. (The component, MatrixMathComp.dll, is in the
\MatrixMathExample\MatrixMathComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

MATLAB Functions to Be Encapsulated
The following code defines the MATLAB functions used in the example.

cholesky.m

function [L] = Cholesky(A)

%CHOLESKY Cholesky factorization of A.

% L= CHOLESKY(A) returns the Cholesky factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

% $Revision: 1.1.4.49 $ $Date: 2009/07/09 17:34:59 $

L = chol(A);

ludecomp.m

function [L,U] = LUDecomp(A)

%LUDECOMP LU factorization of A.

% [L,U]= LUDECOMP(A) returns the LU factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

% $Revision: 1.1.4.49 $ $Date: 2009/07/09 17:34:59 $

[L,U] = lu(A);

qrdecomp.m

function [Q,R] = QRDecomp(A)

3-26

Matrix Math Example

%QRDECOMP QR factorization of A.

% [Q,R]= QRDECOMP(A) returns the QR factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

% $Revision: 1.1.4.49 $ $Date: 2009/07/09 17:34:59 $

[Q,R] = qr(A);

Understanding the MatrixMath Program
The MatrixMath program takes one or two arguments from the command line.
The first argument is converted to the integer order of the test matrix. If the
string sparse is passed as the second argument, a sparse matrix is created
to contain the test array. The Cholesky, LU, and QR factorizations are then
computed and the results are displayed.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls
the cholesky, ludecomp, and qrdecomp methods. This part is executed
inside of a try block. This is done so that if an exception occurs during
execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard
output to let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources
before exiting.

Note This optional as the garbage collector will automatically clean-up
resources for you.

3-27

3 Sample Applications (C#)

Phonebook Example

In this section...

“Purpose” on page 3-28

“Procedure” on page 3-28

Purpose
The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

Note For complete reference information about the MWArray class hierarchy,
see the MWArray class library link on the product roadmap, under
“Documentation Set”.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\dotnetbuilder\Examples\VS8\NET\PhoneBookExample

b At the MATLAB command prompt, cd to the new PhoneBookExample
subfolder in your work folder.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% Copyright 2006-2008 The MathWorks, Inc.

book = friends;

3-28

Phonebook Example

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in
PhoneBookExample\PhoneBookComp\makephone.m.

3 While in MATLAB, issue the following command to open the Deployment
Tool:

deploytool

4 Build the .NET component. See the instructions in “Building Your
Component” on page 1-13 for more details. Use the following information:

Project Name PhoneBookComp

Class Name Phonebook

File to compile makephone.m

5 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\
PhoneBookExample\PhoneBookCSApp\PhoneBookApp.cs.

The program defines a structure array containing names and phone
numbers, modifies it using a MATLAB function, and displays the resulting
structure array.

The program listing is shown here.

PhoneBookApp.cs

// ***

//

// PhoneBookApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a simple

3-29

3 Sample Applications (C#)

// component that makes use of MATLAB structures as function arguments.

//

// Copyright 2001-2008 The MathWorks, Inc.

//

// ***

/* Necessary package imports */

using System;

using System.Collections.Generic;

using System.Text;

using MathWorks.MATLAB.NET.Arrays;

using PhoneBookComp;

namespace MathWorks.Examples.PhoneBookApp

{

//

// This class demonstrates the use of the MWStructArray class

//

class PhoneBookApp

{

static void Main(string[] args)

{

PhoneBook thePhonebook = null; /* Stores deployment class instance */

MWStructArray friends= null; /* Sample input data */

MWArray[] result= null; /* Stores the result */

MWStructArray book= null; /* Ouptut data extracted from result */

/* Create the new deployment object */

thePhonebook= new PhoneBook();

/* Create an MWStructArray with two fields */

String[] myFieldNames= { "name", "phone" };

friends= new MWStructArray(2, 2, myFieldNames);

/* Populate struct with some sample data --- friends and phone number extensions */

friends["name", 1]= new MWCharArray("Jordan Robert");

friends["phone", 1]= 3386;

friends["name", 2]= new MWCharArray("Mary Smith");

friends["phone", 2]= 3912;

friends["name", 3]= new MWCharArray("Stacy Flora");

3-30

Phonebook Example

friends["phone", 3]= 3238;

friends["name", 4]= new MWCharArray("Harry Alpert");

friends["phone", 4]= 3077;

/* Show some of the sample data */

Console.WriteLine("Friends: ");

Console.WriteLine(friends.ToString());

/* Pass it to an M-function that determines external phone number */

result= thePhonebook.makephone(1, friends);

book= (MWStructArray)result[0];

Console.WriteLine("Result: ");

Console.WriteLine(book.ToString());

/* Extract some data from the returned structure */

Console.WriteLine("Result record 2:");

Console.WriteLine(book["name", 2]);

Console.WriteLine(book["phone", 2]);

Console.WriteLine(book["external", 2]);

/* Print the entire result structure using the helper function below */

Console.WriteLine("");

Console.WriteLine("Entire structure:");

DispStruct(book);

Console.ReadLine();

}

public static void DispStruct(MWStructArray arr)

{

Console.WriteLine("Number of Elements: " + arr.NumberOfElements);

int[] dims= arr.Dimensions;

Console.Write("Dimensions: " + dims[0]);

for (int idx= 1; idx < dims.Length; idx++)

3-31

3 Sample Applications (C#)

{

Console.WriteLine("-by-" + dims[idx]);

}

Console.WriteLine("\nNumber of Fields: " + arr.NumberOfFields);

Console.WriteLine("Standard MATLAB view:");

Console.WriteLine(arr.ToString());

Console.WriteLine("Walking structure:");

string[] fieldNames= arr.FieldNames;

for (int element= 1; element <= arr.NumberOfElements; element++)

{

Console.WriteLine("Element " + element);

for (int field= 0; field < arr.NumberOfFields; field++)

{

MWArray fieldVal= arr[arr.FieldNames[field], element];

/* Recursively print substructures, give string display of other classes */

if (fieldVal.GetType() == typeof(MWStructArray))

{

Console.WriteLine(" " + fieldNames[field] + ": nested structure:");

Console.WriteLine("+++ Begin of \"" + fieldNames[field] + "\" nested structure");

DispStruct((MWStructArray)fieldVal);

Console.WriteLine("+++ End of \"" + fieldNames[field] + "\" nested structure");

}

else

{

Console.Write(" " + fieldNames[field] + ": ");

Console.WriteLine(fieldVal.ToString());

}

}

}

}

}

}

3-32

Phonebook Example

The program does the following:

• Creates a structure array, using MWStructArray to represent the
example phonebook data.

• Instantiates the Phonebook class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:
result = thePhonebook.makephone(1, friends);

6 Build thePhoneBookCSApp application using Visual Studio .NET.

a The PhoneBookCSApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking PhoneBookCSApp.csproj in Windows Explorer.
You can also open it from the MATLAB desktop by right-clicking
PhoneBookCSApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the
PhoneBookComp component which you built in a previous
step. (The component, PhoneBookComp.dll, is in the
\PhoneBookExample\PhoneBookComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

The PhoneBookApp program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

3-33

3 Sample Applications (C#)

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:
Element 1

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

3-34

4

Sample Applications
(Microsoft Visual Basic
.NET)

The sample applications that follow use the same components as those
developed in “Deploying a Component Using the Magic Square Example”
on page 1-9 and Chapter 3, “Sample Applications (C#)”. Instead of C#, the
following applications are written in Microsoft Visual Basic .NET. For details
about creating the components, see the procedures noted in the beginning of
the description for each application. Then follow the steps shown here to use
the component in a Visual Basic application.

• “Magic Square Example (Visual Basic)” on page 4-3

• “Create Plot Example (Visual Basic)” on page 4-7

• “Variable Arguments Example (Visual Basic)” on page 4-11

• “Spectral Analysis Example (Visual Basic)” on page 4-15

• “Matrix Math Example (Visual Basic)” on page 4-20

• “Phonebook Example (Visual Basic)” on page 4-25

4 Sample Applications (Microsoft® Visual Basic® .NET)

Note The examples for the MATLAB Builder NE product are in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber, where
matlabroot is the folder where the MATLAB product is installed and
VSversionnumber specifies the version of Microsoft Visual Studio .NET you
are using (currently VS8). If you have Microsoft Visual Studio .NET installed,
you can load projects for all the examples by opening the following solution:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\DotNetExamples.sln

4-2

Magic Square Example (Visual Basic®)

Magic Square Example (Visual Basic)
To create the component for this example, see the first several steps in
“Deploying a Component Using the Magic Square Example” on page 1-9. After
you build the MagicSquareComp component, you can build an application that
accesses the component as follows.

1 For this example, the application is MagicSquareApp.vb.

You can find MagicSquareApp.vb in:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET

\MagicSquareExample\MagicSquareVBApp

The program listing is as follows.

MagicSquareApp.vb

' ***

'

' MagicSquareApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a simple

' component returning a magic square and how to convert MWNumericArray types

' to native .NET types.

'

' Copyright 2001-2008 The MathWorks, Inc.

'

' ***

Imports System

Imports System.Reflection

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MagicSquareComp

Namespace MathWorks.Examples.MagicSquare

' <summary>

4-3

4 Sample Applications (Microsoft® Visual Basic® .NET)

' The MagicSquareApp class computes a magic square of the user specified size.

' </summary>

' <remarks>

' args[0] - a positive integer representing the array size.

' </remarks>

Class MagicSquareApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Dim arraySize As MWNumericArray = Nothing

Dim magicSquare As MWNumericArray = Nothing

Try

' Get user specified command line arguments or set default

If (0 <> args.Length) Then

arraySize = New MWNumericArray(Int32.Parse(args(0)), False)

Else

arraySize = New MWNumericArray(4, False)

End If

' Create the magic square object

Dim magic As MagicSquareClass = New MagicSquareClass

' Compute the magic square and print the result

magicSquare = magic.makesquare(arraySize)

Console.WriteLine("Magic square of order {0}{1}{2}{3}", arraySize, Chr(10), Chr(10), magicSquare)

' Convert the magic square array to a two dimensional native double array

Dim nativeArray(,) As Double = CType(magicSquare.ToArray(MWArrayComponent.Real), Double(,))

Console.WriteLine("{0}Magic square as native array:{1}", Chr(10), Chr(10))

' Display the array elements:

Dim index As Integer = arraySize.ToScalarInteger()

4-4

Magic Square Example (Visual Basic®)

For i As Integer = 0 To index - 1

For j As Integer = 0 To index - 1

Console.WriteLine("Element({0},{1})= {2}", i, j, nativeArray(i, j))

Next j

Next i

Console.ReadLine() 'Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

The application you build from this source file does the following:

• Lets you pass a dimension for the magic square from the command line.

• Converts the dimension argument to a MATLAB integer scalar value.

• Declares variables of type MWNumericArray to handle data required by
the encapsulated makesquare function.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Creates an instance of the MagicSquare class named magic.

• Calls the makesquare method, which belongs to the magic object. The
makesquare method generates the magic square using the MATLAB
magic function.

4-5

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

4 Sample Applications (Microsoft® Visual Basic® .NET)

• Displays the array elements on the command line.

2 Build the application using Visual Studio .NET.

a The MagicSquareVBApp folder contains a Visual Studio .NET project
file for each example. Open the project in Visual Studio .NET for this
example by double-clicking MagicSquareVBApp.vbproj in Windows
Explorer.

b If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add a reference to the MagicSquareComp component, which
is in the distrib subfolder.

d Build and run the application in Visual Studio.NET.

4-6

Create Plot Example (Visual Basic®)

Create Plot Example (Visual Basic)
To create the component for this example, see “Simple Plot Example” on page
3-2. Then create a Visual Basic application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\NET\PlotExample
\PlotVBApp\PlotApp.vb.

The program listing is shown here.

PlotApp.vb

' ***

'

' PlotApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

' that displays a MATLAB figure window.

'

' Copyright 2001-2008 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports PlotComp

Namespace MathWorks.Examples.PlotApp

' <summary>

' This application demonstrates plotting x-y data by graphing a simple

' parabola into a MATLAB figure window.

' </summary>

Class PlotDemoApp

4-7

4 Sample Applications (Microsoft® Visual Basic® .NET)

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Try

Const numPoints As Integer = 10 ' Number of points to plot

Dim idx As Integer

Dim plotValues(,) As Double = New Double(1, numPoints - 1) {}

Dim coords As MWNumericArray

'Plot 5x vs x^2

For idx = 0 To numPoints - 1

Dim x As Double = idx + 1

plotValues(0, idx) = x * 5

plotValues(1, idx) = x * x

Next idx

coords = New MWNumericArray(plotValues)

' Create a new plotter object

Dim plotter As Plotter = New Plotter

' Plot the values

plotter.drawgraph(coords)

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

4-8

Create Plot Example (Visual Basic®)

The program does the following:

• Creates two arrays of double values

• Creates a Plotter object

• Calls the drawgraph method to plot the equation using the MATLAB
plot function

• Uses MWNumericArray to handle the data needed by the drawgraph
method to plot the equation

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Uses a try-catch block to catch and handle any exceptions

The statement

Dim plotter As Plotter = New Plotter

creates an instance of the Plotter class, and the statement

plotter.drawgraph(coords)

calls the method drawgraph.

2 Build the PlotApp application using Visual Studio .NET.

a The PlotVBApp folder contains a Visual Studio .NET project file for this
example. Open the project in Visual Studio .NET by double-clicking
PlotVBApp.vbproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking PlotVBApp.vbproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference
to the PlotComp component which you built in a

4-9

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

4 Sample Applications (Microsoft® Visual Basic® .NET)

previous step. (The component, PlotComp.dll, is in the
\PlotExample\PlotComp\x86\V2.0\Debug\distrib subfolder of your
work area.)

3 Build and run the application in Visual Studio .NET.

4-10

Variable Arguments Example (Visual Basic®)

Variable Arguments Example (Visual Basic)
To create the component for this example, see “Passing Variable Arguments”
on page 3-7. Then create a Microsoft Visual Basic application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\VarArgExample
\VarArgVBApp\VarArgApp.vb.

The program listing is shown here.

VarArgApp.vb

' ***

'

' VarArgApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

' with a variable number of input and output arguments.

'

' Copyright 2001-2008 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports VarArgComp

Namespace MathWorks.Demo.VarArgDemoApp

' <summary>

' This application demonstrates how to call components having methods with varargin/vargout arguments.

' </summary>

Class VarArgDemoApp

4-11

4 Sample Applications (Microsoft® Visual Basic® .NET)

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

' Initialize the input data

Dim colorSpec As MWNumericArray = New MWNumericArray(New Double() {0.9, 0.0, 0.0})

Dim data As MWNumericArray = New MWNumericArray(New Integer(,) {{1, 2}, {2, 4}, {3, 6}, {4, 8}, {5, 10}})

Dim coords() As MWArray = Nothing

Try

' Create a new plotter object

Dim plotter As Plotter = New Plotter

'Extract a variable number of two element x and y coordinate vectors from the data array

coords = plotter.extractcoords(5, data)

' Draw a graph using the specified color to connect the variable number of input coordinates.

' Return a two column data array containing the input coordinates.

data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2), coords(3), coords(4)), _

MWNumericArray)

Console.WriteLine("result={0}{1}", Chr(10), data)

Console.ReadLine() ' Wait for user to exit application

' Note: You can also pass in the coordinate array directly.

data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

Console.WriteLine("result=\{0}{1}", Chr(10), data)

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

4-12

Variable Arguments Example (Visual Basic®)

End Sub

#End Region

End Class

End Namespace

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the
MWArray class library

• Creates a Plotter object

• Calls the extracoords and drawgraph methods

• Uses MWNumericArray to handle the data needed by the methods

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Uses a try-catch-finally block to catch and handle any exceptions

The following statements are alternative ways to call the drawgraph
method:

data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2), coords(3), coords(4)), MWNumericArray)

...

data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

2 Build the VarArgApp application using Visual Studio .NET.

a The VarArgVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
VarArgVBApp.vbproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking VarArgVBApp.vbproj > Open
Outside MATLAB.

4-13

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

4 Sample Applications (Microsoft® Visual Basic® .NET)

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or update the location of) a reference
to the VarArgComp component which you built in a
previous step. (The component, VarArgComp.dll, is in the
\VarArgExample\VarArgComp\x86\V2.0\Debug\distrib subfolder of
your work area.)

3 Build and run the application in Visual Studio .NET.

4-14

Spectral Analysis Example (Visual Basic®)

Spectral Analysis Example (Visual Basic)
To create the component for this example, see the first few steps of the
“Spectral Analysis Example” on page 3-13. Then create a Microsoft Visual
Basic application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\SpectraVBApp\SpectraApp

The program listing is shown here.

SpectraApp.vb

' ***

'

'SpectraApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

' with multiple classes.

'

' Copyright 2001-2008 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports SpectraComp

Namespace MathWorks.Examples.SpectraApp

' <summary>

' This application computes and plots the power spectral density of an input signal.

' </summary>

Class SpectraDemoApp

#Region " MAIN "

4-15

4 Sample Applications (Microsoft® Visual Basic® .NET)

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Try

Const interval As Double = 0.01 ' The sampling interval

Const numSamples As Integer = 1001 ' The number of samples

' Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

' random signal. Duration= 10; Sampling interval= 0.01

Dim data As MWNumericArray = New MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double, numSamples)

Dim random As Random = New Random

' Initialize data

Dim t As Double

Dim idx As Integer

For idx = 1 To numSamples

t = (idx - 1) * interval

data(idx) = New MWNumericArray(Math.Sin(2.0 * Math.PI * 15.0 * t) + Math.Sin(2.0 * Math.PI * 40.0 * t) + rando

Next idx

' Create a new signal analyzer object

Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

' Compute the fft and power spectral density for the data array

Dim argsOut() As MWArray = signalAnalyzer.computefft(3, data, MWArray.op_Implicit(interval))

' Print the first twenty elements of each result array

Dim numElements As Integer = 20

Dim resultArray As MWNumericArray = New MWNumericArray(MWArrayComplexity.Complex, MWNumericType.Double, numElement

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(0), MWNumericArray))(idx)

Next idx

Console.WriteLine("FFT:{0}{1}{2}", Chr(10), resultArray, Chr(10))

For idx = 1 To numElements

4-16

Spectral Analysis Example (Visual Basic®)

resultArray(idx) = (CType(argsOut(1), MWNumericArray))(idx)

Next idx

Console.WriteLine("Frequency:{0}{1}{2}", Chr(10), resultArray, Chr(10))

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(2), MWNumericArray))(idx)

Next idx

Console.WriteLine("Power Spectral Density:{0}{1}{2}", Chr(10), resultArray, Chr(10))

' Create a new plotter object

Dim plotter As Plotter = New Plotter

' Plot the fft and power spectral density for the data array

plotter.plotfft(argsOut(0), argsOut(1), argsOut(2))

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

The program does the following:

• Constructs an input array with values representing a random signal
with two sinusoids at 15 and 40 Hz embedded inside of it

• Uses MWNumericArray to handle data conversion

4-17

4 Sample Applications (Microsoft® Visual Basic® .NET)

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Instantiates a SignalAnalyzer object

• Calls the computefft method, which computes the FFT, frequency, and
the spectral density

• Instantiates a Plotter object

• Calls the plotfft method, which plots the data

• Uses a try/catch block to handle exceptions

The following statements

Dim data As MWNumericArray = New MWNumericArray_
(MWArrayComplexity.Real, MWNumericType.Double, numSamples)

...
Dim resultArray As MWNumericArray = New MWNumericArray_

(MWArrayComplexity.Complex, MWNumericType.Double, numElements)

show how to use the MWArray class library to construct the necessary
data types.

The following statement

Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

creates an instance of the class SignalAnalyzer, and the following
statement

Dim argsOut() As MWArray = signalAnalyzer.computefft
(3, data, MWArray.op_Implicit(interval))

calls the method computefft and request three outputs.

2 Build the SpectraApp application using Visual Studio .NET.

a The SpectraVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking

4-18

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Spectral Analysis Example (Visual Basic®)

SpectraVBApp.vbproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking SpectraVBApp.vbproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or update the location of) a reference
to the SpectraComp component which you built in a
previous step. (The component, SpectraComp.dll, is in the
\SpectraExample\SpectraComp\x86\V2.0\Debug\distrib subfolder
of your work area.)

3 Build and run the application in Visual Studio .NET.

4-19

4 Sample Applications (Microsoft® Visual Basic® .NET)

Matrix Math Example (Visual Basic)
To create the component for this example, see the first few steps in “Matrix
Math Example” on page 3-20. Then create a Microsoft Visual Basic
application as follows.

1 Review the sample application for this example in:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\MatrixMathExample

\MatrixMathVBApp\MatrixMathApp.vb.

The program listing is shown here.

MatrixMathApp.vb

' ***

'

' MatrixMathApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

' that returns multiple results and optionally uses sparse matrices for

' arguments.

' Copyright 2001-2009 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MatrixMathComp

Namespace MathWorks.Demo.MatrixMathApp

' <summary>

' This application computes cholesky, LU, and QR factorizations of a finite difference matrix of order N.

' The order is passed into the application on the command line.

' </summary>

4-20

Matrix Math Example (Visual Basic®)

' <remarks>

' Command Line Arguments:

' <newpara></newpara>

' args[0] - Matrix order(N)

' <newpara></newpara>

' args[1] - (optional) sparse; Use a sparse matrix

' </remarks>

Class MatrixMathDemoApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Dim makeSparse As Boolean = True

Dim matrixOrder As Integer = 4

Dim matrix As MWNumericArray = Nothing ' The matrix to factor

Dim argOut As MWArray = Nothing ' Stores single factorization result

Dim argsOut() As MWArray = Nothing ' Stores multiple factorization results

Try

' If no argument specified, use defaults

If (0 <> args.Length) Then

'Convert matrix order

matrixOrder = Int32.Parse(args(0))

If (0 > matrixOrder) Then

Throw New ArgumentOutOfRangeException("matrixOrder", matrixOrder, _

"Must enter a positive integer for the matrix order(N)")

End If

makeSparse = ((1 < args.Length) AndAlso (args(1).Equals("sparse")))

End If

' Create the test matrix. If the second argument is "sparse", create a sparse matrix.

matrix = IIf(makeSparse, _

4-21

4 Sample Applications (Microsoft® Visual Basic® .NET)

MWNumericArray.MakeSparse(matrixOrder, matrixOrder, MWArrayComplexity.Real, (matrixOrder + (2 * (matrixOrder - 1)

New MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double, matrixOrder, matrixOrder))

' Initialize the test matrix

For rowIdx As Integer = 1 To matrixOrder

For colIdx As Integer = 1 To matrixOrder

If rowIdx = colIdx Then

matrix(rowIdx, colIdx) = New MWNumericArray(2.0)

ElseIf colIdx = rowIdx + 1 Or colIdx = rowIdx - 1 Then

matrix(rowIdx, colIdx) = New MWNumericArray(-1.0)

End If

Next colIdx

Next rowIdx

' Create a new factor object

Dim factor As Factor = New Factor

' Print the test matrix

Console.WriteLine("Test Matrix:{0}{1}{2}", Chr(10), matrix, Chr(10))

' Compute and print the cholesky factorization using the single output syntax

argOut = factor.cholesky(matrix)

Console.WriteLine("Cholesky Factorization:{0}{1}{2}", Chr(10), argOut, Chr(10))

' Compute and print the LU factorization using the multiple output syntax

argsOut = factor.ludecomp(2, matrix)

Console.WriteLine("LU Factorization:{0}L Matrix:{1}{2}{3}U Matrix:{4}{5}{6}", Chr(10), Chr(10), argsOut(0), Chr(10

MWNumericArray.DisposeArray(argsOut)

' Compute and print the QR factorization

argsOut = factor.qrdecomp(2, matrix)

Console.WriteLine("QR Factorization:{0}Q Matrix:{1}{2}{3}R Matrix:{4}{5}{6}", Chr(10), Chr(10), argsOut(0), Chr(10

Console.ReadLine()

Catch exception As Exception

4-22

Matrix Math Example (Visual Basic®)

Console.WriteLine("Error: {0}", exception)

Finally

' Free native resources

If Not (matrix Is Nothing) Then

matrix.Dispose()

End If

If Not (argOut Is Nothing) Then

argOut.Dispose()

End If

MWNumericArray.DisposeArray(argsOut)

End Try

End Sub

#End Region

End Class

End Namespace

The statement

Dim factor As Factor = New Factor

creates an instance of the class Factor.

The following statements call the methods that encapsulate the MATLAB
functions:

argOut = factor.cholesky(matrix)

argsOut = factor.ludecomp(2, matrix)

...
argsOut = factor.qrdecomp(2, matrix)

Note See “Understanding the MatrixMath Program” on page 3-27 for
more details about the structure of this program.

4-23

4 Sample Applications (Microsoft® Visual Basic® .NET)

2 Build the MatrixMathApp application using Visual Studio .NET.

a The MatrixMathVBApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking MatrixMathVBApp.vbproj in Windows Explorer.
You can also open it from the MATLAB desktop by right-clicking
MatrixMathVBApp.vbproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or update the location of) a reference to
the MatrixMathComp component which you built in a previous
step. (The component, MatrixMathComp.dll, is in the
\MatrixMathExample\MatrixMathComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

3 Build and run the application in Visual Studio .NET.

4-24

Phonebook Example (Visual Basic)

Phonebook Example (Visual Basic)

In this section...

“makephone Function” on page 4-25

“Procedure” on page 4-25

makephone Function
The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

Note For complete reference information about the MWArray class hierarchy,
see the MWArray class library link on the product roadmap, under
“Documentation Set”.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\dotnetbuilder\Examples\VS8\NET\PhoneBookExample

b At the MATLAB command prompt, cd to the new PhoneBookExample
subfolder in your work folder.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% This file is used as an example for MATLAB

% Builder for Java.

4-25

4 Sample Applications (Microsoft® Visual Basic® .NET)

% Copyright 2006-2008 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in
PhoneBookExample\PhoneBookComp\makephone.m.

3 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

4 Build the .NET component. See the instructions in “Building Your
Component” on page 1-13 for more details. Use the following information:

Project Name PhoneBookComp

Class Name phonebook

File to compile makephone.m

5 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET
PhoneBookExample\PhoneBookVBApp\PhoneBookApp.vb.

The program defines a structure array containing names and phone
numbers, modifies it using a MATLAB function, and displays the resulting
structure array.

The program listing is shown here.

PhoneBookApp.vb

' ***

'

4-26

Phonebook Example (Visual Basic)

' PhoneBookApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a simple

' component that makes use of MATLAB structures as function arguments.

'

' Copyright 2001-2008 The MathWorks, Inc.

'

' ***

' Necessary package imports

Imports MathWorks.MATLAB.NET.Arrays

Imports PhoneBookComp

'

' getphone class demonstrates the use of the MWStructArray class

'

Public Module PhoneBookVBApp

Public Sub Main()

Dim thePhonebook As phonebook 'Stores deployment class instance

Dim friends As MWStructArray 'Sample input data

Dim result As Object() 'Stores the result

Dim book As MWStructArray 'Ouptut data extracted from result

' Create the new deployment object

thePhonebook = New phonebook()

' Create an MWStructArray with two fields

Dim myFieldNames As String() = {"name", "phone"}

friends = New MWStructArray(2, 2, myFieldNames)

' Populate struct with some sample data --- friends and phone numbers

friends("name", 1) = New MWCharArray("Jordan Robert")

friends("phone", 1) = 3386

friends("name", 2) = New MWCharArray("Mary Smith")

friends("phone", 2) = 3912

friends("name", 3) = New MWCharArray("Stacy Flora")

friends("phone", 3) = 3238

friends("name", 4) = New MWCharArray("Harry Alpert")

friends("phone", 4) = 3077

4-27

4 Sample Applications (Microsoft® Visual Basic® .NET)

' Show some of the sample data

Console.WriteLine("Friends: ")

Console.WriteLine(friends.ToString())

' Pass it to an M-function that determines external phone number

result = thePhonebook.makephone(1, friends)

book = CType(result(0), MWStructArray)

Console.WriteLine("Result: ")

Console.WriteLine(book.ToString())

' Extract some data from the returned structure '

Console.WriteLine("Result record 2:")

Console.WriteLine(book("name", 2))

Console.WriteLine(book("phone", 2))

Console.WriteLine(book("external", 2))

' Print the entire result structure using the helper function below

Console.WriteLine("")

Console.WriteLine("Entire structure:")

dispStruct(book)

End Sub

Sub dispStruct(ByVal arr As MWStructArray)

Console.WriteLine("Number of Elements: " + arr.NumberOfElements.ToString())

'int numDims = arr.NumberofDimensions

Dim dims As Integer() = arr.Dimensions

Console.Write("Dimensions: " + dims(0).ToString())

Dim i As Integer

For i = 1 To dims.Length

Console.WriteLine("-by-" + dims(i - 1).ToString())

Next i

Console.WriteLine("")

Console.WriteLine("Number of Fields: " + arr.NumberOfFields.ToString())

Console.WriteLine("Standard MATLAB view:")

Console.WriteLine(arr.ToString())

Console.WriteLine("Walking structure:")

4-28

Phonebook Example (Visual Basic)

Dim fieldNames As String() = arr.FieldNames

Dim element As Integer

For element = 1 To arr.NumberOfElements

Console.WriteLine("Element " + element.ToString())

Dim field As Integer

For field = 0 To arr.NumberOfFields - 1

Dim fieldVal As MWArray = arr(arr.FieldNames(field), element)

' Recursively print substructures, give string display of other classes

If (TypeOf fieldVal Is MWStructArray) Then

Console.WriteLine(" " + fieldNames(field) + ": nested structure:")

Console.WriteLine("+++ Begin of \"" + fieldNames[field] + " \ " nested structure")

dispStruct(CType(fieldVal, MWStructArray))

Console.WriteLine("+++ End of \"" + fieldNames[field] + " \ " nested structure")

Else

Console.Write(" " + fieldNames(field) + ": ")

Console.WriteLine(fieldVal.ToString())

End If

Next field

Next element

End Sub

End Module

The program does the following:

• Creates a structure array, using MWStructArray to represent the
example phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:
result = thePhonebook.makephone(1, friends);

6 Build thePhoneBookVBApp application using Visual Studio .NET.

a The PhoneBookVBApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking PhoneBookVBApp.csproj in Windows Explorer.

4-29

4 Sample Applications (Microsoft® Visual Basic® .NET)

You can also open it from the MATLAB desktop by right-clicking
PhoneBookVBApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference to
the PhoneBookVBComp component which you built in a
previous step. (The component, PhoneBookComp.dll, is in the
\PhoneBookExample\PhoneBookVBApp\x86\V2.0\Debug\distrib
subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

The getphone program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:

4-30

Phonebook Example (Visual Basic)

Element 1
name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

4-31

4 Sample Applications (Microsoft® Visual Basic® .NET)

4-32

5

Deploying a MATLAB
Figure Over the Web Using
WebFigures

• “About the WebFigures Feature” on page 5-2

• “Before You Use WebFigures” on page 5-3

• “Quick Start: Implementing a WebFigure” on page 5-7

• “Advanced Configuration of a WebFigure” on page 5-15

• “Upgrading Your WebFigures” on page 5-30

• “Troubleshooting” on page 5-31

• “Logging Levels” on page 5-33

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

About the WebFigures Feature
Using the WebFigures feature in MATLAB Builder NE you can display
MATLAB figures on a Web site for graphical manipulation by end users.
This enables them to use their graphical applications from anywhere on the
Web without the need to download MATLAB or other tools that can consume
costly resources.

This chapter includes “Quick Start: Implementing a WebFigure” on page 5-7,
which guides you through implementing the basic features of WebFigures,
and an advanced section to let you customize your configuration depending on
differing server architectures.

Supported Renderers for WebFigures
The MATLAB Builder NE WebFigures feature uses the same renderer used
when the figure was originally created by default.

In MATLAB, the renderer is either explicitly specified for
a figure or determined by the data being plotted. For
more information about supported renderers in MATLAB, see
http://www.mathworks.com/support/tech-notes/1200/1201.html.

Note The WebFigures feature does not support the Painter renderer due to
technical limitations. If this renderer is requested, the renderer Zbuffer will
be invoked before the data is displayed on the Web page.

5-2

http://www.mathworks.com/support/tech-notes/1200/1201.html

Before You Use WebFigures

Before You Use WebFigures

In this section...

“Your Role in the .NET WebFigure Deployment Process” on page 5-3

“What You Need to Know to Implement WebFigures” on page 5-5

“Required Products” on page 5-5

“Assumptions About the Examples” on page 5-6

Your Role in the .NET WebFigure Deployment Process
Depending on your role in your organization, as well as a number of other
criteria, you may need to implement either the beginning or the advanced
configuration of WebFigures.

The table WebFigures for .NET Deployment Roles, Responsibilities, and
Tasks on page 5-3 describes some of the different roles, or jobs, that MATLAB
Builder NE users typically perform and which method of configuration
they would most likely use when running “Quick Start: Implementing a
WebFigure” on page 5-7 and “Advanced Configuration of a WebFigure” on
page 5-15.

WebFigures for .NET Deployment Roles, Responsibilities, and Tasks

Role Typical Responsibilities Tasks

MATLAB programmer • Understand end-user
business requirements and
the mathematical models
needed to support them.

• Write M-code.

• Build an executable
component with MATLAB
tools (usually with support
from a .NET programmer).

• Write and deploy
M-code, such as that in
“Assumptions About the
Examples” on page 5-6.

5-3

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

WebFigures for .NET Deployment Roles, Responsibilities, and Tasks (Continued)

Role Typical Responsibilities Tasks

• Package the component for
distribution to end users.

.NET programmer
(business-service developer or
front-end developer)

• Design and configure the IT
environment, architecture,
or infrastructure.

• Install deployable
applications along with
the proper version of the
MCR.

• Create mechanisms for
exposing application
functionality to the end
user.

• Uses “Quick Start:
Implementing a
WebFigure” on page 5-7
to easily create a graphic,
such as a MATLAB figure,
that the end user can
manipulate over the Web.

• Use the “Advanced
Configuration of a
WebFigure” on page 5-15 to
create a flexible, scalable
implementation that can
meet a number of varied
architectural requirements.

5-4

Before You Use WebFigures

What You Need to Know to Implement WebFigures
The following knowledge is assumed when you implement WebFigures for
.NET:

• If you are a MATLAB programmer:

- A basic knowledge of MATLAB

• If you are a .NET programmer:

- Knowledge of how to build a Web site using Microsoft Visual Studio.

- Experience deploying MATLAB applications

Required Products
Install the following products to implement WebFigures for .NET, depending
on your role.

MATLAB Programmer .NET Programmer

MATLAB R2008b or later Microsoft Visual Studio 2005 or later

MATLAB Compiler Microsoft .NET Framework 2.0 or
later

MATLAB Builder NE MATLAB Compiler Runtime version
7.9 or later

5-5

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

Assumptions About the Examples
To work with the examples in this chapter:

• Assume the following M-function has been created:

function df = getKnot()
f = figure; %Create a figure.
set(f,'Visible','off'); %Make sure it isn't visible.
knot; %Put something into the figure.
df = webfigure(f); %Give the figure to your function

% and return the result.
close(f); %Close the figure.

end

• Assume that the function getKnot has been deployed in a .NET component
(using Chapter 1, “Getting Started” for example) with a namespace of
MyComponent.MyComponentclass.

• Assume the MATLAB Compiler Runtime (MCR) has been installed. If not,
refer to “Install the MCR on Target Computers Without MATLAB and
Update System Paths” in the MATLAB Compiler documentation.

• If you are running on a system with 64-bit architecture, use the information
in “Advanced Configuration of a WebFigure” on page 5-15 to work with
WebFigures unless you are deploying a Web site which is 32-bit only and
you have a 32-bit MCR installed.

5-6

Quick Start: Implementing a WebFigure

Quick Start: Implementing a WebFigure

In this section...

“Overview” on page 5-7

“Procedure” on page 5-7

Overview
Using Quick Start, both the WebFigure service and the page that has the
WebFigure embedded on it reside on a single server. This configuration
enables you to quickly drag and drop the WebFigureControl on a Web page.

Procedure
To implement WebFigures for MATLAB Builder NE using the Quick Start
approach, do the following. For more information about the Quick Start
option, see “About the WebFigures Feature” on page 5-2.

1 Start Microsoft Visual Studio.

2 Select File > New > Web Site to open.

3 Select one of the template options and click OK.

5-7

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

Caution Do not select Empty Web Site as it is not possible create a
WebFigure using this option.

4 Add WebFigureControl to the Microsoft Visual Studio toolbar by dragging
the file InstallRoot\toolbox\dotnetbuilder\bin\arch\v2.0\
WebFiguresService.dll, (where InstallRoot is the location of the
installed MCR for machines with an installed MCR and matlabroot on a
MATLAB Builder NE development machine without the MCR installed),
on to the Microsoft Visual Studio Toolbox toolbar as follows:

Note If you are running on a system with 64-bit architecture, use the
information in “Advanced Configuration of a WebFigure” on page 5-15 to
work with WebFigures unless you are deploying a Web site which is 32-bit
only and you have a 32-bit MCR installed.

a Expand the General section of the Toolbox toolbar.

b Using your mouse, drag the DLL file to the expanded section, as shown
by the arrow:

5-8

Quick Start: Implementing a WebFigure

If you added the control correctly, you will see the following
WebFigureControl in the General section of the Microsoft Visual Studio
toolbar:

5 Drag the WebFigureControl from the toolbar to your Web page. After
dragging, the Web page displays the following default figure.

5-9

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

You can resize the control as you would any other .NET Web control.

6 Switch to the Design view in Microsoft Visual Studio by selecting View
> Designer.

7 Test the Web page by “playing” it in Microsoft Visual Studio. Select Debug
> Start Debugging. The page should appear as follows.

5-10

Quick Start: Implementing a WebFigure

8 Interact with the default figure on the page using your mouse. Click one
of the three control icons at the top of the figure to activate the desired
control, select the desired region of the figure you want to manipulate, then
click and drag as appropriate. For example, to zoom in on the figure, click
the magnifying glass icon, then hover over the figure.

9 Close the page as you would any other window, automatically exiting
debug or “play” mode.

10 The WebFigureService you created has been verified as functioning
properly and you can attach a custom WebFigure to the Web page:

a To enable return of the webfigure and to bind it to the webfigure
control, add a reference to MWArray to your project and a reference to the
deployed component you created earlier (in “Assumptions About the

5-11

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

Examples” on page 5-6). See Chapter 2, “Using Components Created by
the MATLAB® Builder NE Product” for more information.

b In Microsoft Visual Studio, access the code for the Web page by selecting
View > Code.

c In Microsoft Visual Studio, go to the Page_Load method, and add this
code, depending on if you are using the C# or Visual Basic language.
Adding code to the Page_Load method ensures it executes every time
the Web page loads.

• C#:

using MyComponent;

using MathWorks.MATLAB.NET.WebFigures;

public class

{

protected void Page_Load(object sender, EventArgs e)

{

MyComponentclass myDeployedComponent =

new MyComponentclass();

WebFigureControl1.WebFigure =

new WebFigure(myDeployedComponent.getKnot());

}

}

• Visual Basic:

Imports MyComponent

Imports MathWorks.MATLAB.NET.WebFigures

Class

Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs)

Handles Me.Load

Dim myDeployedComponent As _

New MyComponentclass()

WebFigureControl1.WebFigure = _

New WebFigure(myDeployedComponent.getKnot())

End Sub

End Class

5-12

Quick Start: Implementing a WebFigure

Tip This code causes the deployed component to be reinitialized upon
each refresh of the page. A better implementation would involve
initializing the myDeployedComponent variable when the server starts
up using a Global.asax file, and then using that variable to get the
WebFigure object. For more information on Global.asax, see “Using
Global Application Class (Global.asax) to Create WebFigures at Server
Start-Up” on page 5-28.

Note WebFigureControl stores the WebFigure object in the IIS session
cache for each individual user. If this is not the desired configuration, see
“Advanced Configuration of a WebFigure” on page 5-15 for information
on creating a custom configuration.

11 Replay the Web page in Microsoft Visual Studio to confirm your WebFigure
appears as desired. It should look like this.

5-13

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

5-14

Advanced Configuration of a WebFigure

Advanced Configuration of a WebFigure

In this section...

“Overview” on page 5-15

“Manually Installing WebFigureService” on page 5-17

“Retrieving Multiple WebFigures From a Component” on page 5-18

“Attaching a WebFigure” on page 5-21

“Setting Up WebFigureControl for Remote Invocation” on page 5-23

“Getting an Embeddable String That References a WebFigure Attached to
a WebFigureService” on page 5-25

“Improving Processing Times for JavaScript Using Minification” on page
5-27

“Using Global Application Class (Global.asax) to Create WebFigures at
Server Start-Up” on page 5-28

Overview
The advanced configuration gives the experienced .NET programmer (possibly
a business service developer or front-end developer) flexibility and control
in configuring system architecture based on differing needs. For example,
with the WebFigureService and the Web page on different servers, the
administrator can optimally position the MCR (for performance reasons) or
place customer-sensitive customer data behind a security firewall, if needed.

In summary, the advanced configuration offers more choices and adaptability
for the user more familiar with Web environments and related technology, as
illustrated by the following graphics.

This section describes various ways to customize the basic WebFigures
implementation described in “Quick Start: Implementing a WebFigure” on
page 5-7.

5-15

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

5-16

Advanced Configuration of a WebFigure

Manually Installing WebFigureService
WebFigureService is essentially a set of HTTP handlers that can service
requests sent to an instance of Internet Information Service (IIS). There are
occasions when you may want to manually install WebFigureService. For
example:

• You want to implement the WebFigure controls programmatically and
provide more detailed customization.

• Your Web environment was reconfigured from when you initially ran the
“Quick Start: Implementing a WebFigure” on page 5-7.

5-17

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

• You want to implement WebFigures in a multiple server environment,
as depicted in the previous graphic.

• You want to understand more about how WebFigures for .NET works.

When you dragged the GUI control for WebFigures onto the Web page in
“Quick Start: Implementing a WebFigure” on page 5-7, you automatically
installed WebFigureService in the Web application file web.config.

To install this manually:

1 Add a reference to WebFiguresService.dll from the folder
InstallRoot\toolbox\dotnetbuilder\bin\arch\v2.0 to the project,
(where InstallRoot is the location of the installed MCR for machines with
an installed MCR and matlabroot on a MATLAB Builder NE development
machine without the MCR installed).

2 Add these lines to the <httpHandlers> section of web.config. This tells
IIS to send any requests that come to the __WebFigures.ashx file to the
WebFigureHttpHandlerFactory in the WebFiguresService.dll.

<httpHandlers>
<add path="__WebFigures.ashx"

verb="GET"
type="MathWorks.MATLAB.NET.WebFigures.

Service.Handlers.Factories.
Http.WebFigureHttpHandlerFactory"

validate="false" />
</httpHandlers>

Retrieving Multiple WebFigures From a Component
If your deployed component returns several WebFigures, then you have to
make additional modifications to your code.

MATLAB sees a WebFigure the same way it see a MWStructArray. WebFigure
constructors accept a WebFigure, an MWArray, or an MWStructArray as inputs.

Use the following examples as guides, depending on what type of functions
you are working with.

5-18

Advanced Configuration of a WebFigure

Working with Functions that Return a Single WebFigure as the
Function’s Only Output

C#

using MyComponent;
using MathWorks.MATLAB.NET.WebFigures;

public class
{

protected void Page_Load(object sender, EventArgs e)
{

MyComponentclass myDeployedComponent =
new MyComponentclass();

WebFigureControl1.WebFigure =
new WebFigure(myDeployedComponent.getKnot());

}
}

Visual Basic

Imports MyComponent
Imports MathWorks.MATLAB.NET.WebFigures

Class
Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs)
Handles Me.Load

Dim myDeployedComponent As _
New MyComponentclass()

WebFigureControl1.WebFigure = _
New WebFigure(myDeployedComponent.getKnot())

End Sub
End Class

5-19

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

Working With Functions That Return Multiple WebFigures In
an Array as the Output

C#

using MyComponent;
using MathWorks.MATLAB.NET.WebFigures;

public class
{

protected void Page_Load(object sender, EventArgs e)
{

MyComponentclass myDeployedComponent =
new MyComponentclass();

//If the function returns an array with 4 WebFigures
// in it and takes in no inputs.
MWArray[] outputs = myDeployedComponent.getKnot(4);

WebFigureControl1.WebFigure =
new WebFigure(outputs[0]);

WebFigureControl2.WebFigure =
new WebFigure(outputs[1]);

WebFigureControl3.WebFigure =
new WebFigure(outputs[2]);

WebFigureControl4.WebFigure =
new WebFigure(outputs[3]);

}
}

Visual Basic

Imports MyComponent
Imports MathWorks.MATLAB.NET.WebFigures

Class
Protected Sub Page_Load(ByVal sender As Object,

5-20

Advanced Configuration of a WebFigure

ByVal e As System.EventArgs)
Handles Me.Load

Dim myDeployedComponent As _
New MyComponentclass()

Dim outputs as MWArray() = _
myDeployedComponent.getKnot(4)

WebFigureControl1.WebFigure = _
New WebFigure(outputs(0))

WebFigureControl2.WebFigure = _
New WebFigure(outputs(1))

WebFigureControl3.WebFigure = _
New WebFigure(outputs(2))

WebFigureControl4.WebFigure = _
New WebFigure(outputs(3))

End Sub
End Class

Attaching a WebFigure
After you have manually installed WebFigureService, the server where it
is installed is ready to receive requests for any WebFigure information. In
the Quick Start, WebFigureService uses the session cache built into IIS to
retrieve a WebFigure, per user, and display it. Since a WebFigureControl isn’t
being used in this case, you need to manually set up the WebFigureService
and attach the WebFigure. Add the code supplied in this section to attach a
WebFigure of your choosing.

This method of setting up WebFigureService and attaching the figure
manually is very useful in the following situations:

• You do not want front-end servers to have WebFigureService running
on them for performance reasons.

• You are displaying a WebFigure that does not change based on the current
user or session. When multiple users are sharing the same WebFigure,
which is very common, it is much more efficient to store a single WebFigure

5-21

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

in the Application or Cache state, rather than issuing all users their
own figure.

There are a number of ways to attach a WebFigure to a scope, depending on
state (note that these terms follow standard industry definitions and usage):

State Definition

Session The method used by WebFigureControl by default, which is
tied to a specific user session and cannot be shared across
sessions. If you use IIS session sharing capabilities, you can
use this across servers in a cluster.

Application Available for any user of your application, per application
lifetime. IIS will not propagate this across servers in a
cluster, but if each server attaches the data to this cache
once, all users can access it very efficiently.

Cache Similar to Application, but with more potential settings.
You can assign “time to live” and other settings found in
Microsoft documentation.

Note In this type of configuration, it is typical to have the following code
executed once in the Global.asax server startup block. For more information
on Global.asax, see “Using Global Application Class (Global.asax) to Create
WebFigures at Server Start-Up” on page 5-28.

Add the following code to manually attach the WebFigure, based on whether
you are using C# or Visual Basic:

• C#:

MyComponentclass myDeployedComponent =
new MyComponentclass();

Session["SessionStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

Or

5-22

Advanced Configuration of a WebFigure

Application["ApplicationStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

Or

Cache["CacheStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

• Visual Basic:

Dim myDeployedComponent As _
New MyComponentclass()

Session("SessionStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

Or

Application("ApplicationStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

Or

Cache("CacheStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

Setting Up WebFigureControl for Remote Invocation
After you drag a WebFigureControl onto a page, as in “Quick Start:
Implementing a WebFigure” on page 5-7, you either assign the WebFigure
property or set the Remote Invocation properties, depending on how the
figure will be used.

The procedure in this section allows you to tell WebFigureControl to reference
a WebFigure that has been manually attached to a WebFigureService on a
remote server or cluster of remote servers. This allows you to use the custom
control, yet the resources of WebFigureService are running on a remote
server to maximize performance.

1 Drag a WebFigureControl from the toolbox onto the page, if you haven’t
done so already in “Quick Start: Implementing a WebFigure” on page 5-7.

5-23

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

Note If you are running on a system with 64-bit architecture, use the
information in “Advanced Configuration of a WebFigure” on page 5-15 to
work with WebFigures unless you are deploying a Web site which is 32-bit
only and you have a 32-bit MCR installed.

2 In the Properties pane for this control, set the Name and Scope attributes
as follows:

• Name ApplicationStateWebFigure

• Scope application

Caution Always attempt to define the scope. If you leave Scope blank,
the Session state, the Application state, and then the Cache state (in
this order) will be checked. If there are WebFigures in any of these states
with the same name, there can be potential for conflict and confusion.
The first figure with the same name will be used by default.

The pane should now look like this:

5-24

Advanced Configuration of a WebFigure

Note If you don’t provide a root (usually the location of the load balancer),
it is assumed to be the server where the page is executing.

Getting an Embeddable String That References a
WebFigure Attached to a WebFigureService
From any server, you can use the GetHTMLEmbedString API to get a string
that can be embedded onto a page, if you followed the procedures “Manually
Installing WebFigureService” on page 5-17 in “Attaching a WebFigure” on
page 5-21.

To do so, use the following optional parameters and code snippets (or
something similar, depending on your implementation). For information on
the differences between session, application, and cache scopes, see “Attaching
a WebFigure” on page 5-21.

5-25

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

GetHTMLEmbedString API Parameters

Parameter If not specified...

ID Default MATLAB WebFigure (the MATLAB
membrane logo).

Root The relative path to the current Web page
will be used.

WebFigureAttachType Will search through Session state, then
Application state, then Cache state.

Height Default height will be 420.

Width Default width will be 560.

Referencing a WebFigure Attached to the Local Server

• C#:

using MathWorks.MATLAB.NET.WebFigures.Service;

String localEmbedString =
WebFigureServiceUtility.GetHTMLEmbedString(

"SessionStateWebFigure",
WebFigureAttachType.session,
300,
300);

Response.Write(localEmbedString);

• Visual Basic:

Imports MathWorks.MATLAB.NET.WebFigures.Service

Dim localEmbedString As String = _
WebFigureServiceUtility.GetHTMLEmbedString(_

"SessionStateWebFigure", _
WebFigureAttachType.session, _
300, _
300)

5-26

Advanced Configuration of a WebFigure

Response.Write(localEmbedString)

Referencing a WebFigure Attached to a Remote Server

• C#:

using MathWorks.MATLAB.NET.WebFigures.Service;

String remoteEmbedString =
WebFigureServiceUtility.GetHTMLEmbedString(

"SessionStateWebFigure",
"http://localhost:20309/WebSite7/",
WebFigureAttachType.session,
300,
300);

Response.Write(remoteEmbedString);

• Visual Basic:

Imports MathWorks.MATLAB.NET.WebFigures.Service

Dim localEmbedString As String = _
WebFigureServiceUtility.GetHTMLEmbedString(_

"SessionStateWebFigure", _
"http://localhost:20309/WebSite7/", _
WebFigureAttachType.session, _
300, _
300)

Response.Write(localEmbedString)

Improving Processing Times for JavaScript Using
Minification
This application uses JavaScript to perform most of its AJAX functionality.
Because JavaScript runs in the client browser, it must all be streamed to the
client computer before it can execute. To improve this process, you use a
standard JavaScript minification algorithm to remove comments and white

5-27

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

space in the code. This feature is enabled by default. To disable it, create
an environment variable called mathworks.webfigures.disableJSMin and
set its value to true.

Using Global Application Class (Global.asax) to
Create WebFigures at Server Start-Up
In ASP.NET there is a special type of object you can add called a Global
Application Class, Also known by the name Global.asax.

Global.asax classes have methods that are called at various times in the IIS
life cycle, such as Application_Start and Application_End. These methods
get called respectively when the server is first started and when the server is
being shut down.

As seen in “Quick Start: Implementing a WebFigure” on page 5-7, the
default behavior for a WebFigureControl is to store data in the Session
cache on the server. In other words, each user that accesses a page using a
WebFigureControl has an individual instance of that WebFigure in the cache.
This is useful if each user gets specific data, but resources can be wasted in
situations where all users are accessing the same WebFigures.

Therefore, in order to maximize available resources, it makes sense to move
WebFigure code for commonly used figures into the Application_Start
method of the Global.asax. In the following example, code written in the
Web page initialization section of “Attaching a WebFigure” on page 5-21 is
moved into a Global.asax method as follows:

C#

void Application_Start(object sender, EventArgs e)
{

// Code that runs on application startup
MyComponentclass myDeployedComponent =

new MyComponentclass();

Application["ApplicationStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

//Or

5-28

Advanced Configuration of a WebFigure

Cache["CacheStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

}

Visual Basic

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
' Code that runs on application startup
Dim myDeployedComponent As _

New MyComponentclass()

Application("ApplicationStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

'Or

Cache("CacheStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

End Sub

Note In this scenario, notice a WebFigure is not bound to the Session, since
you usually need to share the WebFigures across different sessions. However,
it may be useful to use the Cache option, since it provides a way to specify
Time To Live so the WebFigure can be regenerated and reattached at a
specific time interval.

Once the figure is attached to a cache, reference it either from the
WebFigureControl as seen in “Setting Up WebFigureControl for Remote
Invocation” on page 5-23 or directly from the Web page as in “Getting
an Embeddable String That References a WebFigure Attached to a
WebFigureService” on page 5-25.

5-29

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

Upgrading Your WebFigures
If you want to upgrade your version of MATLAB Builder NE and retain
WebFigures created with a prior product release, do the following:

1 Delete the WebFigureControl icon from the toolbox.

2 Delete any WebFigures from your page.

3 Upgrade your version of MATLAB Builder NE .

4 Add the new WebFigureControl icon to the toolbox.

5 Drag new WebFigures on to your page.

5-30

Troubleshooting

Troubleshooting
Use the following section to diagnose error conditions encountered when
implementing WebFigures for the .NET feature.

In WebFigures, there are two ways to display errors: by turning debug on for
the site, and by turning it off. When debug is turned on, some error messages
contain links to HTML pages that describe how the problem might be solved.
When it is turned off, only the error message is shown.

Common causes of errors include:

• MCR is not installed or is the wrong version (meaning MWArray.dll is the
wrong version or WebFigureService.dll is the wrong version).

• Deployed component is a different version than that compatible with the
MCR.

• Incorrect framework is being used (only .NET 2.0 Framework is supported
as of R2008b for WebFigures).

• WebFigureService is not installed. See “Manually Installing
WebFigureService” on page 5-17.

• WebFigure is not attached to WebFigureService. See “Attaching a
WebFigure” on page 5-21.

• Remote root URL is pointing to an invalid server.

Common errors and their diagnosis follow.

Error Diagnosis

Issue Displaying Image. Please
Refresh.

Most often, this message is generated
when the session state has expired
and the WebFigure has been
deleted. Refreshing the session will
reestablish the WebFigure in cache
and the figure will reappear.

No WebFigure Can Be Found with
the Name Specified

The WebFigure isn’t attached
correctly. See “Attaching a
WebFigure” on page 5-21.

5-31

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

Error Diagnosis

WebFigureServiceHas Encountered
an Unrecoverable Error

A critical error has occurred but the
exact cause is unknown. Typically
this is due to some type of system
configuration issue that could not be
anticipated.

WebFigureService Not Functioning The WebFigureService
httpHanderFactory could
not be found on the server
specified. See “Manually Installing
WebFigureService” on page 5-17.

Could not find a part of the path
pathname

The logging environment variable is
set to a folder that does not exist.

5-32

Logging Levels

Logging Levels
There are several logging levels that can be used to diagnose problems with
WebFigures.

Logging Level Uses

Severe Unrecoverable errors and exceptions

Warning Recoverable errors that might occur

Information Informative messages

Finer For monitoring application flow (when different parts of
an application are executed)

You can manually set the log level by setting an environment variable called
mathworks.webfigures.logLevel to one of the above strings.

If you set this environment variable to something other than the above strings
or it is not set, it defaults to a level of Warning or Severe only.

By default, all exceptions are shown within the WebFigure control on the Web
page when debug mode is on for the site.

If you want more detailed logging information, or log information
when debug is not on, set an environment variable called
mathworks.webfigures.logLocation to the location where the log file is
written. The log file is named yourwebappnameWFSLog.txt.

5-33

5 Deploying a MATLAB® Figure Over the Web Using WebFigures

5-34

6

Working with MATLAB
Figures and Images

• “Your Role in Working with Figures and Images” on page 6-2

• “Creating and Modifying a MATLAB Figure” on page 6-3

• “Working with MATLAB Figure and Image Data” on page 6-6

6 Working with MATLAB® Figures and Images

Your Role in Working with Figures and Images

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a

component that is given to the

business service developer
MATLAB

Programmer

When you work with figures and images as a MATLAB programmer, you are
responsible for:

• Preparing a MATLAB figure for export

• Making changes to the figure (optional)

• Exporting the figure

• Cleaning up the figure window

Creates front end applications

Front-End
Developer

Service consumer responsible for

presentation and usability

No MATLAB experience

When you work with figures and images as a front-end developer, some of the
tasks you are responsible for include:

• Getting a WebFigure from a deployed component

• Getting raw image data from a deployed component converted into a byte
array

• Getting a buffered image from a component

• Getting a buffered image or a byte array from a WebFigure

6-2

Creating and Modifying a MATLAB® Figure

Creating and Modifying a MATLAB Figure

In this section...

“Preparing a MATLAB Figure for Export” on page 6-3

“Changing the Figure (Optional)” on page 6-3

“Exporting the Figure” on page 6-4

“Cleaning Up the Figure Window” on page 6-4

“Example: Modifying and Exporting Figure Data” on page 6-4

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a

component that is given to the

business service developer
MATLAB

Programmer

Preparing a MATLAB Figure for Export

1 Create a figure window. For example:

h = figure;

2 Add graphics to the figure. For example:

surf(peaks);

Changing the Figure (Optional)
Optionally, you can change the figure numerous ways. For example:

Alter Visibility

set(h, 'Visible', 'off');

Change Background Color

set(h, 'Color', [.8,.9,1]);

6-3

6 Working with MATLAB® Figures and Images

Alter Orientation and Size

width=500;
height=500;
rotation=30;
elevation=30;
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);

Exporting the Figure
Export the contents of the figure in one of two ways:

WebFigure
To export as a WebFigure:

returnFigure = webfigure(h);

Image Data
To export image data, for example:

imgform = 'png';
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imgForm, ...
`outputType', `uint8');

Cleaning Up the Figure Window
To close the figure window:

close(h);

Example: Modifying and Exporting Figure Data

WebFigure
function returnFigure = getWebFigure()
h = figure;
set(h, 'Visible', 'off');
surf(peaks);

6-4

Creating and Modifying a MATLAB® Figure

set(h, 'Color', [.8,.9,1]);
returnFigure = webfigure(h);
close(h);

Image Data
function returnByteArray = getImageDataOrientation(height, width,

elevation, rotation, imageFormat)
h = figure;
set(h, 'Visible', 'off');
surf(peaks);
set(h, 'Color', [.8,.9,1]);
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imageFormat, ...
`outputType', `uint8');

close(h);

6-5

6 Working with MATLAB® Figures and Images

Working with MATLAB Figure and Image Data

In this section...

“For More Comprehensive Examples” on page 6-6

“Working with Figures” on page 6-6

“Working with Images” on page 6-6

Creates front end applications

Front-End
Developer

Service consumer responsible for

presentation and usability

No MATLAB experience

For More Comprehensive Examples
This section contains code snippets intended to demonstrate specific
functionality related to working with figure and image data.

To see these snippets in the context of more fully-functional multi-step
examples, see the MATLAB Application Deployment Web Example Guide.

Working with Figures

Getting a Figure From a Deployed Component
For information about how to retrieve a figure from a deployed component, see
“Working with Functions that Return a Single WebFigure as the Function’s
Only Output” on page 5-19.

Working with Images

Getting Encoded Image Bytes from an Image in a Component

.NET

public byte[] getByteArrayFromDeployedComponent()

6-6

Working with MATLAB® Figure and Image Data

{
MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation(

height,
width,
elevation,
rotation,
imageFormat);

return (byte[])result.ToVector(MWArrayComponent.Real);
}

Getting a Buffered Image in a Component

.NET

public byte[] getByteArrayFromDeployedComponent()
{

MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation(

height,
width,
elevation,
rotation,
imageFormat);

return (byte[])result.ToVector(MWArrayComponent.Real);
}

6-7

6 Working with MATLAB® Figures and Images

public Image getImageFromDeployedComponent()
{

byte[] byteArray = getByteArrayFromDeployedComponent();
MemoryStream ms = new MemoryStream(myByteArray, 0,
myByteArray.Length);
ms.Write(myByteArray, 0, myByteArray.Length);
return Image.FromStream(ms, true);

}

Getting Image Data from a WebFigure
The following example shows how to get image data from a WebFigure object.
It also shows how to specify the image type and the orientation of the image.

.NET

WebFigure figure =
new WebFigure(deployment.getWebFigure());

WebFigureRenderer renderer =
new WebFigureRenderer();

//Creates a parameter object that can be changed
// to represent a specific WebFigure and its orientation.
//If you dont set any values it uses the defaults for that
// figure (what they were when the figure was created in M).
WebFigureRenderParameters param =

new WebFigureRenderParameters(figure);

param.Rotation = 30;
param.Elevation = 30;
param.Width = 500;
param.Height = 500;

//If you need a byte array that can be streamed out
// of a web page you can use this:
byte[] outputImageAsBytes =

renderer.RenderToEncodedBytes(param);

6-8

Working with MATLAB® Figure and Image Data

//If you need a .NET Image (can't be used on the web)
// you can use this code:
Image outputImageAsImage =

renderer.RenderToImage(param);

6-9

6 Working with MATLAB® Figures and Images

6-10

7

Sharing Components Across
Distributed Applications
Using .NET Remoting

• “Overview” on page 7-2

• “Your Role in Building Distributed Applications” on page 7-4

• “Selecting the Best Method of Accessing Your Component: MWArray API
or Native .NET API” on page 7-5

• “Creating a Remotable .NET Component” on page 7-7

• “Enabling Access to a Remotable .NET Component” on page 7-11

7 Sharing Components Across Distributed Applications Using .NET Remoting

Overview

In this section...

“What Are Remotable Components?” on page 7-2

“Benefits of Using .NET Remoting” on page 7-2

What Are Remotable Components?
Remotable .NET components allow you to access MATLAB functionality
remotely, as part of a distributed system consisting of multiple applications,
domains, browsers, or machines.

To create a remotable component, you must first create the component and
then enable others to access it.

Benefits of Using .NET Remoting
There are many reasons to create remotable components:

• Cost savings — Changes to business logic do not require you to roll out
new software to every client. Rather, new updates can be confined to a
small set of business servers.

• Increased security for Web applications — Implementing .NET
Remoting allows your database, for example, to reside safely behind one or
more firewalls.

• Software Compatibility— Using remotable components, which employ
standard formatting protocols like SOAP (Simple Object Access Protocol),
can significantly enhance the compatibility of the component with libraries
and applications.

• Ability to run applications as Windows services — To run as a
Windows service, you must have access to a remoteable component hosted
by the service. Applications implemented as a Windows service provide
many benefits to application developers who require an automated server
running as a background process independent of a particular user account.

7-2

Overview

• Flexibility to isolate native code binaries that were previously
incompatible — Mix native and managed code (such as the MATLAB
Compiler Runtime) without restrictions.

7-3

7 Sharing Components Across Distributed Applications Using .NET Remoting

Your Role in Building Distributed Applications
Depending on your role in your organization, you may need assistance to
completely implement .NET Remoting. The next table, .NET Remoting
Deployment Roles, Responsibilities, and Tasks, describes some of the different
roles, or jobs, that MATLAB Builder NE users typically perform when
designing, building, running, and deploying a remotable .NET component.

.NET Remoting Deployment Roles, Responsibilities, and Tasks

Role Goal Tasks

MATLAB programmer Creates distributed .NET
applications run by remotable
components, from M-code.

• Writes and deploys M-code.

• Creates a deployable,
remotable .NET component
as in “Creating a Remotable
.NET Component” on page
7-7.

.NET programmer Exposes .NET applications to
end users.

• Writes client/server code
to access the remotable
component as in “Using
the MWArray API” on page
7-11 or “Using the Native
.NET API” on page 7-18.

7-4

Selecting the Best Method of Accessing Your Component: MWArray API or Native .NET API

Selecting the Best Method of Accessing Your Component:
MWArray API or Native .NET API

As of R2008b, there are two data conversion API’s that are available to
marshal and format data across the managed (.NET) / unmanaged (MATLAB)
code boundary. In addition to the previously available MWArray API, the new
Native API is available. Each API has advantages and limitations and each
has particular applications for which it is best suited.

The MWArray API, which consists of the MWArray class and several derived
types that map to MATLAB data types, is the standard API that has been used
since the introduction of MATLAB Builder NE. It provides full marshaling
and formatting services for all basic MATLAB data types including sparse
arrays, structures, and cell arrays. This API requires the MATLAB MCR
to be installed on the target machine as it makes use of several primitive
MATLAB functions. For information about using this API, see “Using the
MWArray API” on page 7-11.

The Native API was designed especially, though not exclusively, to support
.NET remoting. It allows you to pass arguments and return values using
standard .NET types. This feature is especially useful for clients that access a
remoteable component using the native interface API, as it does not require
the client machine to have the MATLAB MCR installed. In addition, as only
native .NET types are used in this API, there is no need to learn semantics of
a new set of data conversion classes. This API does not directly support .NET
analogs for the MATLAB structure and cell array types. For information
about using this API, see “Using the Native .NET API” on page 7-18.

Features of the MWArray API Compared With the Native .NET API

MWArray API Native .NET API

Marshalling/formatting
for all basic MATLAB
types

X

7-5

7 Sharing Components Across Distributed Applications Using .NET Remoting

Features of the MWArray API Compared With the Native .NET API
(Continued)

MWArray API Native .NET API

Pass arguments and
return values using
standard .NET types

X

Access to remotable
component from client
without installed
MATLAB

X

7-6

Creating a Remotable .NET Component

Creating a Remotable .NET Component

In this section...

“Building a Remotable Component Using the Deployment Tool” on page 7-7

“Building a Remotable Component Using the mcc Command” on page 7-9

“Files Generated by the Compilation Process” on page 7-10

Building a Remotable Component Using the
Deployment Tool

Preparing To Build Your Remote Component with deploytool

1 Copy the example files as follows depending on whether you plan to use the
MWArray API or the native .NET API:

• If using the MWArray API, copy the following folder that ships with
the MATLAB product to your working folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\MagicRemoteExample\
MWArrayAPI\MagicSquareRemoteComp

After you copy the files, at the MATLAB command prompt, cd to the new
MagicSquareRemoteComp subfolder in your working folder.

• If using the native .NET API, copy the following folder that ships with
the MATLAB product to your working folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\MagicRemoteExample\
NativeAPI\MagicSquareRemoteComp

After you copy the file, at the MATLAB command prompt, cd to the new
MagicSquareRemoteComp subfolder in your working folder.

2 Write the MATLAB function as you would any MATLAB function—no
additions to your M-code are required to support .NET Remoting. The
following code for the makesquare function is in the file makesquare.m in
the MagicSquareRemoteComp subfolder:

7-7

7 Sharing Components Across Distributed Applications Using .NET Remoting

function y = makesquare(x)

%MAKESQUARE Magic square of size x.
% Y = MAKESQUARE(X) returns a magic square of size x.
% This file is used as an example for the MATLAB
% Builder NE product.

% Copyright 2001-2008 The MathWorks, Inc.
% $Revision: 1.1.4.19 $ $Date: 2009/06/11 19:06:11 $

y = magic(x);

3 In MATLAB, open the Deployment Tool by issuing the deploytool
command.

4 Click the Actions icon () in the upper right corner. Then, select
Settings.

a Select .NET under Project Settings.

b Select Enable .NET Remoting.

c Click OK.

Build Your Remote Component with deploytool

1 Create a deployment project. A project is a collection of files you bundle
together under a project file name (.prj file) for your convenience in the
Deployment Tool. Using a project makes it easy for you to build and run
an application many times—effectively testing it—until it is ready for
deployment.

a Type the name of your project in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Target drop-down
menu.

d Click OK.

7-8

Creating a Remotable .NET Component

2 On the Build tab, add what you want to compile, and any supporting
files, to the project.

a Do the following, depending on the type of application you are building:

• If you are building a COM application or Microsoft Excel add-in, click
Add files.

• If you are building a .NET application, click Add class. Type the
name of the class in the Class Name field, designated by the letter “c”:

For this class, add files you want to compile by clicking Add files. To
add another class, click Add class.

b Add any supporting files. For example, you can add the following files,
as appropriate for your project:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

• Code you want to remain private

• Code from other programs that you want to compile and link into
the main file

If you want to include additional files, in the Shared Resources and
Helper Files area, click Add files/directories. Click Open to select
the file or files.

3 When you complete your changes, click the Build button ().

Building a Remotable Component Using the mcc
Command
From the MATLAB prompt, issue the following command:

mcc -B
"dotnet:CompName,ClassName,FrameworkVersion,ShareFlag,RemoteFlag"

where:

7-9

7 Sharing Components Across Distributed Applications Using .NET Remoting

• CompName is the name of the component you want to create.

• ClassName is the name of the C# class to which the component belongs.

• FrameworkVersion is the version of .NET Framework for the component
you are building. For example, 2.0 would denote .NET Framework 2.0.

• ShareFlag designates access to the component. Values are either private
or shared. Default is private.

• RemoteFlag designates either a remote or local component. Values are
either remote or local. Default is local.

Note .NET Framework 1.1 is no longer supported as of R2008b.

For example, if you want to build a private remotable component using the
Magic Square example in Chapter 1, “Getting Started”, the mcc command to
build the component for the .NET 2.0 Framework might look like this:

mcc -B "dotnet:MagicSquareComp,MagicSquareClass,2.0,private,remote"

Files Generated by the Compilation Process
After compiling the components, ensure you have the following files in your
distrib folder:

• MagicSquareComp.dll — The MWArray API component implementation
assembly used by the server.

• IMagicSquareComp.dll— The MWArray API component interface assembly
used by the client .

• MagicSquareCompNative.dll — The native .NET API component
implementation assembly used by the server.

• IMagicSquareCompNative.dll — The native .NET API component
interface assembly used by the client. Note that an MCR does not have to
be installed on the client when using this interface.

7-10

Enabling Access to a Remotable .NET Component

Enabling Access to a Remotable .NET Component

In this section...

“Using the MWArray API” on page 7-11

“Using the Native .NET API” on page 7-18

Using the MWArray API

Why Use the MWArray API?
After the remotable component has been successfully created, you can set up
a console server and client using the MWArray API. For more information on
choosing the right API for your access needs, see “Selecting the Best Method of
Accessing Your Component: MWArray API or Native .NET API” on page 7-5.

Some reasons you might use the MWArray API instead of the native .NET
API are:

• You are working with data structure arrays, which the native .NET API
does not support.

• You or your users work extensively with many MATLAB data types.

• You or your users are familiar and comfortable using the MWArray API.

For information on accessing your component using the native .NET API, see
“Using the Native .NET API” on page 7-18.

Coding and Building the Hosting Console Server and
Configuration File
The console server hosts the remote component built in “Creating a Remotable
.NET Component” on page 7-7. You can also perform these steps using the
MWArray API (see “Using the Native .NET API” on page 7-18).

The client application, running in a separate process, accesses the remote
component hosted by the console server. Build the server using the Microsoft
Visual Studio project file MagicSquareServer\MagicSquareMWServer.csproj:

7-11

7 Sharing Components Across Distributed Applications Using .NET Remoting

1 Change the references for the generated component assembly to
MagicSquareComp\distrib\MagicSquareComp.dll.

2 Select the appropriate build platform.

3 Select Debug or Release mode.

4 Build the MagicSquareMWServer project.

5 Supply the configuration file for the MagicSquareMWServer.

MagicSquareServer Code. The C# code for the server in the file
MagicSquareServer\MagicSquareServer.cs. The MagicSquareServer.cs
server code is shown here:

using System;

using System.Runtime.Remoting;

namespace MagicSquareServer

{

class MagicSquareServer

{

static void Main(string[] args)

{

RemotingConfiguration.Configure

(@"..\..\..\..\MagicSquareServer.exe.config");

Console.WriteLine("Magic Square Server started...");

Console.ReadLine();

}

}

}

This code does the following:

• Reads the associated configuration file to determine the name of the
component that it will host, the remoting protocol and message formatting
to use, as well as the lease time for the remote component.

7-12

Enabling Access to a Remotable .NET Component

• Signals that the server is active and waits for a carriage return to be
entered before terminating.

MagicSquareServer Configuration File. The
configuration file for the MagicSquareServer is in the file
MagicSquareServer\MagicSquareServer.exe.config. The entire
configuration file, written in XML, is shown here:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="SingleCall"

type="MagicSquareComp.MagicSquareClass, MagicSquareComp"

objectUri="MagicSquareClass.remote" />

</service>

<lifetime leaseTime= "5M" renewOnCallTime="2M"

leaseManagerPollTime="10S" />

<channels>

<channel ref="tcp" port="1234">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

<debug loadTypes="true"/>

</system.runtime.remoting>

</configuration>

This code specifies:

• The mode in which the remote component will be accessed—in this case,
single call mode

• The name of the remote component, the component assembly, and the object
URI (uniform resource identifier) used to access the remote component

• The lease time for the remote component

• The remoting protocol (TCP/IP) and port number

7-13

7 Sharing Components Across Distributed Applications Using .NET Remoting

• The message formatter (binary) and the permissions for the communication
channel (full trust)

• The server debugging option

Coding and Building the Client Application and Configuration
File
The client application, running in a separate process, accesses the
remote component running in the console server built in “Coding
and Building the Hosting Console Server and Configuration File”
on page 7-11. Build the remote client using the Microsoft Visual
Studio project file MagicSquareClient\MagicSquareMWClient.csproj
which references both the shared data conversion assembly
matlabroot\toolbox\dotnetbuilder\bin\win32\v2.0\
MWArray.dll and the generated component interface assembly
MagicSquareComp\distrib\IMagicSquareComp. To create the remote client
using Microsoft Visual Studio:

1 Select the appropriate build platform.

2 Select Debug or Release mode.

3 Build the MagicSquareMWClient project.

4 Supply the configuration file for the MagicSquareMWServer.

MagicSquareClient Code. The C# code for the client is in the file
MagicSquareClient\MagicSquareClient.cs. The client code is shown here:

using System;

using System.Configuration;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Collections;

using System.Runtime.Serialization.Formatters;

using System.Runtime.Remoting.Channels.Tcp;

using MathWorks.MATLAB.NET.Utility;

7-14

Enabling Access to a Remotable .NET Component

using MathWorks.MATLAB.NET.Arrays;

using IMagicSquareComp;

namespace MagicSquareClient

{

class MagicSquareClient

{

static void Main(string[] args)

{

try

{

RemotingConfiguration.Configure

(@"MagicSquareClient.exe.config");

String urlServer=

ConfigurationSettings.AppSettings["MagicSquareServer"];

IMagicSquareClass magicSquareComp=

(IMagicSquareClass)Activator.GetObject

(typeof(IMagicSquareClass),

urlServer);

// Get user specified command line arguments or set default

double arraySize= (0 != args.Length)

? Double.Parse(args[0]) : 4;

// Compute the magic square and print the result

MWNumericArray magicSquare=

(MWNumericArray)magicSquareComp.makesquare

(arraySize);

Console.WriteLine("Magic square of order {0}\n\n{1}",

arraySize, magicSquare);

}

catch (Exception exception)

{

Console.WriteLine(exception.Message);

}

7-15

7 Sharing Components Across Distributed Applications Using .NET Remoting

Console.ReadLine();

}

}

}

This code does the following:

• The client reads the associated configuration file to get the name and
location of the remoteable component.

• The client instantiates the remoteable object using the static
Activator.GetObject method

• From this point, the remoting client calls methods on the remoteable
component exactly as it would call a local component method.

MagicSquareClient Configuration File. The
configuration file for the magic square client is in the file
MagicSquareClient\MagicSquareClient.exe.config. The configuration
file, written in XML, is shown here:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="MagicSquareServer"

value="tcp://localhost:1234/MagicSquareClass.remote"/>

</appSettings>

<system.runtime.remoting>

<application>

<channels>

<channel name="MagicSquareChannel" ref="tcp" port="0">

<clientProviders>

<formatter ref="binary" />

</clientProviders>

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

7-16

Enabling Access to a Remotable .NET Component

</system.runtime.remoting>

</configuration>

This code specifies:

• The name of the remote component server and the remote component URI
(uniform resource identifier)

• The remoting protocol (TCP/IP) and port number

• The message formatter (binary) and the permissions for the communication
channel (full trust)

Starting the Console Server
Starting the server by doing the following:

1 Open a DOS or UNIX® command window and cd to
MagicSquareServer\bin\x86\v2.0\Debug.

2 Run MagicSquareServer.exe. You will see the message:

Magic Square Server started...

Starting the Client Application
Start the client by doing the following:

1 Open a DOS or UNIX command window and cd to
MagicSquareClient\bin\x86\v2.0\Debug.

2 Run MagicSquareClient.exe. After the MCR initializes, you should see
the following output:

Magic square of order 4

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

7-17

7 Sharing Components Across Distributed Applications Using .NET Remoting

Using the Native .NET API

Why Use the Native .NET API?
After the remotable component has been created, you can set up a console
server and client using the native .NET API. For more information on
choosing the right API for your access needs, see “Selecting the Best Method of
Accessing Your Component: MWArray API or Native .NET API” on page 7-5.

Some reasons you might use the native .NET API instead of the MWArray
API are:

• You want to pass arguments and return values using standard .NET types,
and you or your users don’t work extensively with data types specific to
MATLAB.

• You want to access your component from a client machine without an
installed version of MATLAB.

For information on accessing your component using the MWArray API, see
“Using the MWArray API” on page 7-11.

Coding and Building the Hosting Console Server and
Configuration File
The console server will host the remote component you built in “Creating a
Remotable .NET Component” on page 7-7.

The client application, running in a separate process, will
access the remote component hosted by the console server.
Build the server with the Microsoft Visual Studio project file
MagicSquareServer\MagicSquareMWServer.csproj:

1 Change the references for the generated component assembly to
MagicSquareComp\distrib\MagicSquareCompNative.dll.

2 Select the appropriate build platform.

3 Select Debug or Release mode.

4 Build the MagicSquareServer project.

7-18

Enabling Access to a Remotable .NET Component

5 Supply the configuration file for the MagicSquareServer.

MagicSquareServer Code. The C# code for the server is in the file
MagicSquareServer\MagicSquareServer.cs. The MagicSquareServer.cs
server code is shown here:

using System;

using System.Runtime.Remoting;

namespace MagicSquareServer

{

class MagicSquareServer

{

static void Main(string[] args)

{

RemotingConfiguration.Configure

(@"..\..\..\..\MagicSquareServer.exe.config");

Console.WriteLine("Magic Square Server started...");

Console.ReadLine();

}

}

}

This code does the following:

• Reads the associated configuration file to determine the name of the
component that it will host, the remoting protocol and message formatting
to use, as well as the lease time for the remote component.

• Signals that the server is active and waits for a carriage return to be
entered before terminating.

MagicSquareServer Configuration File. The
configuration file for the MagicSquareServer is in the file
MagicSquareServer\MagicSquareServer.exe.config. The entire
configuration file, written in XML, is shown here:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

7-19

7 Sharing Components Across Distributed Applications Using .NET Remoting

<system.runtime.remoting>

<application>

<service>

<wellknown mode="SingleCall"

type="MagicSquareCompNative.MagicSquareClass,

MagicSquareCompNative"

objectUri="MagicSquareClass.remote" />

</service>

<lifetime leaseTime= "5M" renewOnCallTime="2M"

leaseManagerPollTime="10S" />

<channels>

<channel ref="tcp" port="1234">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

<debug loadTypes="true"/>

</system.runtime.remoting>

</configuration>

This code specifies:

• The mode in which the remote component will be accessed—in this case,
single call mode

• The name of the remote component, the component assembly, and the object
URI (uniform resource identifier) used to access the remote component

• The lease time for the remote component

• The remoting protocol (TCP/IP) and port number

• The message formatter (binary) and the permissions for the communication
channel (full trust)

• The server debugging option

7-20

Enabling Access to a Remotable .NET Component

Coding and Building the Client Application and Configuration
File
The client application, running in a separate process, accesses the
remote component running in the console server built in “Coding
and Building the Hosting Console Server and Configuration File”
on page 7-18. Build the remote client using the Microsoft Visual
Studio project file MagicSquareClient\MagicSquareClient.csproj
which references both the shared data conversion assembly
matlabroot\toolbox\dotnetbuilder\bin\win32\v2.0\
MWArray.dll and the generated component interface assembly
MagicSquareComp\distrib\IMagicSquareCompNative. To create the remote
client using Microsoft Visual Studio:

1 Select the appropriate build platform.

2 Select Debug or Release mode.

3 Build the MagicSquareClient project.

4 Supply the configuration file for the MagicSquareServer.

MagicSquareClient Code. The C# code for the client is in the file
MagicSquareClient\MagicSquareClient.cs. The client code is shown here:

using System;

using System.Configuration;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Collections;

using System.Runtime.Serialization.Formatters;

using System.Runtime.Remoting.Channels.Tcp;

using IMagicSquareCompNative;

namespace MagicSquareClient

{

class MagicSquareClient

{

7-21

7 Sharing Components Across Distributed Applications Using .NET Remoting

static void Main(string[] args)

{

try

{

RemotingConfiguration.Configure

(@"MagicSquareClient.exe.config");

String urlServer=

ConfigurationSettings.AppSettings["MagicSquareServer"];

IMagicSquareClassNative magicSquareComp=

(IMagicSquareClassNative)Activator.GetObject

(typeof(IMagicSquareClassNative), urlServer);

// Get user specified command line arguments or set default

double arraySize= (0 != args.Length)

? Double.Parse(args[0]) : 4;

// Compute the magic square and print the result

double[,] magicSquare=

(double[,])magicSquareComp.makesquare(arraySize);

Console.WriteLine("Magic square of order {0}\n", arraySize);

// Display the array elements:

for (int i = 0; i < (int)arraySize; i++)

for (int j = 0; j < (int)arraySize; j++)

Console.WriteLine

("Element({0},{1})= {2}", i, j, magicSquare[i, j]);

}

catch (Exception exception)

{

Console.WriteLine(exception.Message);

}

Console.ReadLine();

}

}

}

7-22

Enabling Access to a Remotable .NET Component

This code does the following:

• The client reads the associated configuration file to get the name and
location of the remoteable component.

• The client instantiates the remoteable object using the static
Activator.GetObject method

• From this point, the remoting client calls methods on the remoteable
component exactly as it would call a local component method.

MagicSquareClient Configuration File. The
configuration file for the magic square client is in the file
MagicSquareClient\MagicSquareClient.exe.config. The configuration
file, written in XML, is shown here:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="MagicSquareServer"

value="tcp://localhost:1234/MagicSquareClass.remote"/>

</appSettings>

<system.runtime.remoting>

<application>

<channels>

<channel name="MagicSquareChannel" ref="tcp" port="0">

<clientProviders>

<formatter ref="binary" />

</clientProviders>

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

This code specifies:

7-23

7 Sharing Components Across Distributed Applications Using .NET Remoting

• The name of the remote component server and the remote component URI
(uniform resource identifier)

• The remoting protocol (TCP/IP) and port number

• The message formatter (binary) and the permissions for the communication
channel (full trust)

Starting the Console Server
Start the server by doing the following:

1 Open a DOS or UNIX command window and cd to
MagicSquareServer\bin\x86\v2.0\Debug.

2 Run MagicSquareServer.exe. You will see the message:

Magic Square Server started...

Starting the Client Application
Start the client by doing the following:

1 Open a DOS or UNIX command window and cd to
MagicSquareClient\bin\x86\v2.0\Debug.

2 Run MagicSquareClient.exe. After the MCR initializes you should see
the following output:

Magic square of order 4

Element(0,0)= 16
Element(0,1)= 2
Element(0,2)= 3
Element(0,3)= 13
Element(1,0)= 5
Element(1,1)= 11
Element(1,2)= 10
Element(1,3)= 8
Element(2,0)= 9
Element(2,1)= 7
Element(2,2)= 6

7-24

Enabling Access to a Remotable .NET Component

Element(2,3)= 12
Element(3,0)= 4
Element(3,1)= 14
Element(3,2)= 15
Element(3,3)= 1

7-25

7 Sharing Components Across Distributed Applications Using .NET Remoting

7-26

8

Troubleshooting

This chapter provides some solutions to common problems encountered using
the MATLAB Builder NE product.

• “Troubleshooting the Build Process ” on page 8-2

• “Failure to Find a Required File” on page 8-3

• “Diagnostic Messages” on page 8-4

8 Troubleshooting

Troubleshooting the Build Process

In this section...

“Viewing the Latest Build Log” on page 8-2

“Generating Verbose Output” on page 8-2

Viewing the Latest Build Log
To view the log of your most recent build process, open the
build log, which is generated in the intermediate folder for your
project. By default, the intermediate folder for a project is
project_folder/projectname_without_ext/src.

Generating Verbose Output
Telling the Deployment Tool to generate verbose output provides a more
detailed log of each build. These details can assist you in determining the ca
of problems you encounter.

To enable verbose output during builds, select Generate Verbose Output in
the Deployment Tool window.

8-2

Failure to Find a Required File

Failure to Find a Required File
If your application generates a diagnostic message indicating that a module
cannot be found, it could be that the MCR is not located properly on your
path. How to fix this problem depends on whether it occurs on a development
machine (where you are using the builder to create a component) or target
machine (where you are trying to use the component in your application).
The required locations are as follows for the MCR according to development
versus target machines.

• Make sure that matlabroot\runtime\architecture appears on your
system path ahead of any other MATLAB installations.
(matlabroot is your root MATLAB folder.)

• Verify that mcr_root\ver\runtime
\architecture appears on your system path.
(mcr_root is your root MCR folder) and ver represents the MCR version
number.

8-3

8 Troubleshooting

Diagnostic Messages
The following table shows diagnostic messages you might encounter, probable
causes for the message, and suggested solutions.

Note The MATLAB Builder NE product uses the MATLAB Compiler product
to generate components. This means that you might see diagnostic messages
from MATLAB Compiler. See “Compile-Time Errors” in the MATLAB
Compiler documentation for more information about those messages.

See the following table for information about some diagnostic messages.

Diagnostic Messages and Suggested Solutions

Message Probable Cause Suggested Solution

You may get this error
message while registering
the project DLL from the
DOS prompt. This usually
occurs if the MATLAB
product is not on the
system path.

See “Failure to Find a Required
File” on page 8-3.

LoadLibrary
("component_name_1_0.dll")
failed - The specified
module could not be found.

You might also get this
error if you try to deploy
your component without
adding the path for the
DLL to the system path on
the target machine.

On the target machine where the
COM component is to be used:

1 Use the extractCTF.exe
utility to decompress the .ctf
file generated by the builder
when you built the COM
component.

2 Look at the files in the CTF,
and note the path for the DLL.

3 Add this path to the system
path.

8-4

Diagnostic Messages

Diagnostic Messages and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

See the MATLAB Compiler
documentation for
more information about
extractctf.exe.

MBUILD.BAT: Error: The
chosen compiler does
not support building COM
objects.

The chosen compiler does
not support building COM
objects.

Rerun mbuild -setup and choose
a supported compiler.

Error in component_name.
class_name.x: Error
getting data conversion
flags.

This is often caused by
mwcomutil.dll not being
registered.

1 Open a DOS window.

2 Change folders to
matlabroot\runtime
\architecture.

3 Run the following command:
mwregsvr mwcomutil.dll

(matlabroot is your root
MATLAB folder.)

Error in VBAProject:
ActiveX component can't
create object.

• Project DLL is not
registered.

• An incompatible
MATLAB DLL exists
somewhere on the
system path.

If the DLL is not registered,

1 Open a DOS window.

2 Change folders to
projectdir\distrib.

3 Run the following command:
mwregsvr projectdll.dll

(projectdir represents the
location of your project files).

8-5

8 Troubleshooting

Diagnostic Messages and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

Error in VBAProject:
Automation error The
specified module could not
be found.

This usually occurs if
MATLAB is not on the
system path.

See “Failure to Find a Required
File” on page 8-3.

QueryInterface for
interface <COM OBJECT
NAME> failed.

You might be using
the incorrect number
and/or type of function
parameters to call into
your COM object.

Function calls to COM objects
that encapsulate MATLAB
functions must have the same
number and data type of
arguments as the COM object. In
general:

• Use a Variant data type for the
return type of the COM object.

• Use doubles as default numeric
input parameters (rather than
integers).

You might also use development
tools such as OLEVIEW and
Object Browser, which ship
with Microsoft Visual Studio
and Microsoft Visual Basic,
respectively, to verify the
expected function signature of
TypeLib for the COM object.

Enhanced Error Diagnostics Using mstack Trace
Use this enhanced diagnostic feature to troubleshoot problems that occur
specifically during M-code execution.

To implement this feature, use .NET exception handling to invoke the
M-function inside of the .NET application, as demonstrated in this try-catch
code block:

8-6

Diagnostic Messages

try
{
Magic magic = new Magic();
magic.callmakeerror();
}
catch(Exception ex)
{
Console.WriteLine("Error: {0}", exception);
}

When an error occurs, the M-code stack trace is printed before the Microsoft
.NET application stack trace, as follows:

... Matlab M-code Stack Trace ...
at

file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\dmakeerror.m,name dmakeerror_error2,line at 14.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\dmakeerror.m,name dmakeerror_error1,line at 11.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\dmakeerror.m,name dmakeerror,line at 4.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\calldmakeerror.m,name calldmakeerror,line at 2.

... .Application Stack Trace ...
at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction

(String functionName, Int32 numArgsOut, Int
32 numArgsIn, MWArray[] argsIn)

at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction
(Int32 numArgsOut, String functionName, MWA
rray[] argsIn)

at CalldmakeerrComp.Calldmakeerr.calldmakeerror() in
h:\compiler\g388611\cathy\MagicDemoComp\src\

8-7

8 Troubleshooting

Calldmakeerr.cs:line 140
at MathWorks.Demo.MagicSquareApp.MagicDemoApp.Main(String[]

args) in H:\compiler\g388611\cathy\Ma
gicDemoCSharpApp\MagicDemoApp.cs:line 52

8-8

9

Reference Information

• “Requirements for the MATLAB® Builder NE Product” on page 9-2

• “Data Conversion Rules” on page 9-4

• “Overview of Data Conversion Classes” on page 9-7

• “MWArray Class Specification” on page 9-14

9 Reference Information

Requirements for the MATLAB Builder NE Product

In this section...

“System Requirements ” on page 9-2

“Compiler Requirements” on page 9-2

“Path Modifications Required for Accessibility” on page 9-3

“Limitations and Restrictions” on page 9-3

System Requirements
System requirements and restrictions on use for the MATLAB Builder NE
product are as follows:

• All requirements for the MATLAB Compiler product; see “Installation and
Configuration” in the MATLAB Compiler documentation.

• Microsoft .NET Framework 2.0 or higher must be installed.

• Either Microsoft Visual Studio 2003, Microsoft Visual Studio 2005, or the
corresponding .NET Framework SDK must be available on the target
machine.

Compiler Requirements
You must have the MATLAB and MATLAB Compiler products installed to
install the MATLAB Builder NE product.

MATLAB Builder NE is available only on Windows (32-bit and 64-bit
versions).

For an up-to-date list of all the compilers supported by MATLAB and MATLAB
Compiler, see http://www.mathworks.com/support/compilers/current_release/.

Note Before you use MATLAB Builder NE to build COM components, you
must run mbuild -setup to configure your C/C++ compiler to work with
MATLAB Compiler.

9-2

http://www.mathworks.com/support/compilers/current_release/

Requirements for the MATLAB® Builder™ NE Product

Caution When generating unmanaged C++ code on Windows, use only the
MSVC compiler. This is the compiler that MathWorks™ uses most frequently
in test.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®,
you must add the following DLLs to your Windows path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

Limitations and Restrictions
In general, limitations and restrictions on the use of the builder are the same
as those for MATLAB Compiler. See the MATLAB Compiler documentation
for details.

Using CGI Scripts
As of Release 2006b, CGI scripts can call MATLAB using the Engine API
interface if you have a concurrent or designated license.

9-3

9 Reference Information

Data Conversion Rules

In this section...

“Managed Types to MATLAB Arrays” on page 9-4

“MATLAB Arrays to Managed Types” on page 9-5

“Character and String Conversion” on page 9-5

“Unsupported MATLAB Array Types” on page 9-6

Managed Types to MATLAB Arrays
The following table lists the data conversion rules used when converting
native .NET types to MATLAB arrays.

Note The conversion rules listed in these tables apply to scalars, vectors,
matrices, and multidimensional arrays of the native types listed.

Conversion Rules: Managed Types to MATLAB Arrays

Native .NET
Type

MATLAB
Array Comments

System.Double double —

System.Single single

System.Int64 int64

System.Int32 int32

System.Int16 int16

System.Byte int8

Available only when the makeDouble
constructor argument is set to false. The
default is true, which creates a MATLAB
double type.

System.String char None

System.Boolean logical None

9-4

Data Conversion Rules

MATLAB Arrays to Managed Types
The following table lists the data conversion rules used when converting
MATLAB arrays to native .NET types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the listed MATLAB types.

Conversion Rules: MATLAB Arrays to Managed Types

MATLAB
Type

.NET Type
(Primitive) .NET Type (Class) Comments

cell N/A MWCellArray

structure N/A MWStructArray

char System.String MWCharArray

Cell and struct
arrays have no
corresponding
.NET type.

double System.Double MWNumericArray

single System.Single MWNumericArray

Default is type
double.

uint64 System.Int64 MWNumericArray Not supported

uint32 System.Int32 MWNumericArray Not supported

uint16 System.Int16 MWNumericArray Not supported

uint8 System.Byte MWNumericArray None

logical System.Boolean MWLogicalArray None

Function
handle

N/A N/A None

Object N/A N/A None

Character and String Conversion
A native .NET string is converted to a 1-by-N MATLAB character array, with
N equal to the length of the .NET string.

9-5

9 Reference Information

An array of .NET strings (string[]) is converted to an M-by-N character array,
with M equal to the number of elements in the string ([]) array and N equal to
the maximum string length in the array.

Higher dimensional arrays of String are similarly converted.

In general, an N-dimensional array of String is converted to an N+1
dimensional MATLAB character array with appropriate zero padding where
supplied strings have different lengths.

Unsupported MATLAB Array Types
The MATLAB Builder NE product does not support the following MATLAB
array types because they are not CLS-compliant:

• int8

• uint16

• uint32

• uint64

9-6

Overview of Data Conversion Classes

Overview of Data Conversion Classes

In this section...

“Overview” on page 9-7

“Returning Data from MATLAB to Managed Code” on page 9-8

“Example of MWNumericArray in a .NET Application” on page 9-8

“Interfaces Generated by the MATLAB® Builder NE Product” on page 9-8

Overview
The data conversion classes are

• MWArray

• MWIndexArray

• MWCellArray

• MWCharacterArray

• MWLogicalArray

• MWNumericArray

• MWStructArray

Note For complete reference information about the MWArray class hierarchy,
see the MWArray Class Library Reference (available online only).

MWArray and MWIndexArray are abstract classes. The other classes represent
the standard MATLAB array types: cell, character, logical, numeric, and
struct. Each class provides constructors and a set of properties and methods
for creating and accessing the state of the underlying MATLAB array.

There are some data types (cell arrays, structure arrays, and arrays of
complex numbers) commonly used in the MATLAB product that are not
available as native .NET types. To represent these data types, you must
create an instance of eitherMWCellArray, MWStructArray, or MWNumericArray.

9-7

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

9 Reference Information

Returning Data from MATLAB to Managed Code
All data returned from a MATLAB function to a .NET method is represented
as an instance of the appropriate MWArray subclass. For example, a MATLAB
cell array is returned as an MWCellArray object.

Return data is not automatically converted to a native array. If you need to
get the corresponding native array type, call the ToArray method, which
converts a MATLAB array to the appropriate native data type, except for cell
and struct arrays. See “Deploying a Component Using the Magic Square
Example” on page 1-9.

Example of MWNumericArray in a .NET Application
Here is a code fragment that shows how to convert a double value (5.0) to a
MWNumericArray type:

MWNumericArray arraySize = 5.0;
magicSquare = magic.MakeSqr(arraySize);

After the double value is converted and assigned to the variable arraySize,
you can use the arraySize argument with the MATLAB based method
without further conversion. In this example, the MATLAB based method is
magic.MakeSqr(arraySize).

Interfaces Generated by the MATLAB Builder NE
Product
For each MATLAB function that you specify as part of a .NET component,
the builder generates an API based on the MATLAB function signature, as
follows:

• A single output signature that assumes that only a single output is required
and returns the result in a single MWArray rather than an array of MWArrays.

• A standard signature that specifies inputs of type MWArray and returns
values as an array of MWArray.

• A feval signature that includes both input and output arguments in the
argument list rather than returning outputs as a return value. Output
arguments are specified first, followed by the input arguments.

9-8

Overview of Data Conversion Classes

Single Output API

Note Typically you use the single output interface for MATLAB functions
that return a single argument. You can also use the single output interface
when you want to use the output of a function as the input to another function.

For each MATLAB function, the builder generates a wrapper class that has
overloaded methods to implement the various forms of the generic MATLAB
function call. The single output API for a MATLAB function returns a single
MWArray value.

For example, the following table shows a generic function foo along with the
single output API that the builder generates for its several forms.

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

API if there
are no input
arguments

public MWArray foo()

API if there
are one or
more input
arguments

public MWArray foo(
MWArray In1,
MWArray In2
...
MWArray inN)

API if there are
optional input
arguments

public MWArray foo(
MWArray In1,
MWArray In2,

...,
MWArray inN
params MWArray[] varargin
)

In the example, the input arguments In1, In2, and inN are of type MWArray
objects.

9-9

9 Reference Information

Similarly, in the case of optional arguments, the params arguments are of
type MWArray. (The varargin argument is similar to the varargin function
in MATLAB — it allows the user to pass a variable number of arguments.)

Note When you call a class method in your .NET application, specify all
required inputs first, followed by any optional arguments.

Functions having a single integer input require an explicit cast to type
MWNumericArray to distinguish the method signature from a standard
interface signature that has no input arguments.

Standard API
Typically you use the standard interface for MATLAB functions that return
multiple output values.

The standard calling interface returns an array of MWArray objects rather
than a single array object.

The standard API for a generic function with none, one, more than one, or a
variable number of arguments, is shown in the following table.

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

API if there
are no input
arguments

public MWArray[] foo(
int numArgsOut
)

API if there
is one input
argument

public MWArray [] foo(
int numArgsOut,
MWArray In1
)

9-10

Overview of Data Conversion Classes

API if there
are two
to N input
arguments

public MWArray[] foo(
int numArgsOut,
MWArray In1,
MWArray In2,
...
MWArray InN
)

API if there
are optional
arguments,
represented
by the
varargin
argument

public MWArray[] foo(
int numArgsOut,
MWArray in1,
MWArray in2,
...,

MWArray InN,
params MWArray[] varargin
)

Details about the arguments for these samples of standard signatures are
shown in the following table.

Argument Description Details

numArgsOut Number of
outputs

An integer indicating the number of
outputs you want the method to return.

The value of numArgsOut must be less
than or equal to the MATLAB function
nargout.

The numArgsOut argument must always
be the first argument in the list.

In1, In2,
...InN

Required input
arguments

All arguments that follow numArgsOut
in the argument list are inputs to the
method being called.

Specify all required inputs first. Each
required input must be of type MWArray
or one of its derived types.

9-11

9 Reference Information

Argument Description Details

varargin Optional inputs You can also specify optional inputs if
your M-code uses the varargin input:
list the optional inputs, or put them in
an MWArray[] argument, placing the
array last in the argument list.

Out1, Out2,
...OutN

Output
arguments

With the standard calling interface, all
output arguments are returned as an
array of MWArrays.

feval API
In addition to the methods in the single API and the standard API, in most
cases, the builder produces an additional overloaded method. If the original
M-code contains no output arguments, then the builder will not generate
the feval method interface.

For a function with the following structure,

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

The builder generates the following API, known as the feval interface,

public void foo
(int numArgsOut,
ref MWArray [] ArgsOut,
MWArray[] ArgsIn)

where the arguments are as follows:

9-12

Overview of Data Conversion Classes

numArgsOut Number of
outputs

Same as standard interface.

An integer indicating the number of
outputs you want to return.

This number generally matches the
number of output arguments that
follow. The varargout array counts
as just one argument, if present.

ref MWArray []
ArgsOut

Output
arguments

Following numArgsOut are all the
outputs of the original M-code, each
listed in the same order as they
appear on the left side of the original
M-code.

A ref attribute prefaces all output
arguments indicating that these
arrays are passed by reference.

MWArray[] ArgsIn Input
arguments

MWArray types or a supported .NET
primitive type.

When you pass an instance of
an MWArray type, the underlying
MATLAB array is passed directly to
the called function. Native types are
first converted to MWArray types.

9-13

9 Reference Information

MWArray Class Specification
For complete reference information about the MWArray class hierarchy, see
the MWArray Class Library Reference (available online only).

See “Specifying Component Assembly and Namespace” on page 2-3 for
information about referencing the classes in your .NET programming
environment.

9-14

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

10

Function Reference

componentinfo

Purpose Query system registry about COM component created with MATLAB
Builder NE

Syntax info = componentinfo

info = componentinfo(component_name)

info = componentinfo(component_name, major_revision_number)

info = componentinfo(component_name, major_revision_number,

minor_revision_number)

Arguments component_name MATLAB string naming the COM
component created by MATLAB Builder
NE. Names are case sensitive. If the
argument is not supplied, information is
returned on all installed components.

major_revision_number Component major revision number. If the
argument is not supplied, information is
returned on all major revisions.

minor_revision_number Component minor revision number.
Default value is 0.

Description info = componentinfo returns information for all components
installed on the system.

info = componentinfo(component_name) returns information for all
revisions of component_name.

info = componentinfo(component_name, major_revision_number)
returns information for the most recent minor revision corresponding to
major_revision_number of component_name.

info = componentinfo(component_name, major_revision_number,
minor_revision_number) returns information for the specific major
and minor version of component_name.

The return value is an array of structures representing all the registry
and type information needed to load and use the component.

10-2

componentinfo

When you supply a component name, major_revision_number and
minor_revision_number are interpreted as shown next.

Value Information Returned

> 0 Information on a specific major and minor revision.

0 Information on the most recent revision. When omitted,
minor_revision_number is assumed to be 0.

< 0 Information on all versions.

This table describes the fields in componentinfo.

Registry Information Returned by componentinfo

Field Description

Name Component name.

TypeLib Component type library.

LIBID Component type library GUID.

MajorRev Major version number .

MinorRev Minor version number.

FileName Type library file name and path. Since all the builder
components have the type library bound into the DLL, this
file name is the same as the DLL name and path.

10-3

componentinfo

Registry Information Returned by componentinfo (Continued)

Field Description

Interfaces An array of structures defining all interface definitions in
the type library. Each structure contains two fields:

• Name - Interface name.

• IID - Interface GUID.

CoClasses An array of structures defining all COM classes in the
component. Each structure contains these fields:

• Name - Class name.

• CLSID - GUID of the class.

• ProgID - Version-dependent program ID.

• VerIndProgID - Version-independent program ID.

• InprocServer32 - Full name and path to component DLL.

• Methods - A structure containing function prototypes
of all class methods defined for this interface. This
structure contains four fields:

- IDL - An array of Interface Description Language
function prototypes.

- M - An array of MATLAB function prototypes.

- C - An array of C-language function prototypes.

- VB - An array of VBA function prototypes.

• Properties - A cell array containing the names of all class
properties.

• Events - A structure containing function prototypes of
all events defined for this class. This structure contains
four fields:

10-4

componentinfo

Registry Information Returned by componentinfo (Continued)

Field Description

- IDL - An array of Interface Description Language
function prototypes.

- M - An array of MATLAB function prototypes.

- C - An array of C-language function prototypes.

- VB - An array of VBA function prototypes.

Usage Use the componentinfo function to get information (such as class name,
program ID) to pass on to users of a component that you create.

The componentinfo function also provides a record of changes made to
the registry on your development machine. This information might be
useful for debugging if you run into problems.

Examples Function Call Returned Information

Info = componentinfo Information for all installed
components.

Info =
componentinfo('mycomponent')

Information for all revisions
of mycomponent.

Info =
componentinfo('mycomponent',1,0)

Information for revision 1.0
of mycomponent.

10-5

deploytool

Purpose Open GUI for MATLAB Builder NE and MATLAB Compiler

Syntax deploytool

Description The deploytool command opens the Deployment Tool window, which
is the graphical user interface (GUI) for the MATLAB Builder NE and
MATLAB Compiler products.

See “Deploying a Component Using the Magic Square Example” on
page 1-9 to get started using the Deployment Tool to create .NET and
COM components, and see the MATLAB Compiler documentation for
information about using the Deployment Tool to create standalone
applications and libraries.

See Chapter 1, “Getting Started”, for more information about deploying
with the GUI.

10-6

figToImStream

Purpose Stream out figure “snapshot” as byte array encoded in format specified,
creating signed byte array in .png format.

Syntax output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)

Description The output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)
command also accepts user-defined variables for any of the input
arguments, passed as a comma-separated list

The size and position of the printed output depends on the figure’s
PaperPosition[mode] properties.

Options figToImStream('figHandle', Figure_Handle, ...) allows you to
specify the figure output to be used. The Default is the current image

figToImStream('imageFormat', [png|jpg|bmp|gif]) allows you to
specify the converted image format. Default value is png.

figToImStream('outputType', [int8!uint8]) allows you to specify
an output byte data type. uint8 (unsigned byte) is used primarily for
.NET primitive byte. Default value is uint8.

Examples Convert the current figure to a signed png byte array:

surf(peaks)
bytes = figToImStream

Convert a specific figure to an unsigned bmp byte array:

f = figure;
surf(peaks);
bytes = figToImStream('figHandle', f, ...

'imageFormat', 'bmp', ...
'outputType', 'uint8');

10-7

mcc

Purpose Invoke MATLAB Compiler

Syntax mcc - W 'dotnet:component_name,class_name,
0.0|2.0, Private|Encryption_Key_Path'
file1[file2...fileN]
[class{class_name:file1 [,file2,...,fileN]},...]
[-d output_dir_path]
-T link:lib

Description mcc is the MATLAB command that invokes the MATLAB Compiler
product. You can issue the mcc command either from the MATLAB
command prompt (MATLAB mode) or the DOS or UNIX command line
(standalone mode).

mcc prepares M-file(s) for deployment outside of the MATLAB
environment. When used with the MATLAB Builder NE product,
wrapper files can be used with all CLS-compliant languages, such as
C#, Microsoft Visual Basic .NET, and C++ with Managed Extensions.

For each M-file, the main function is a method of the wrapper class
generated by MATLAB Builder NE.

Options The -W option is used when running mcc with MATLAB Builder NE.

For a complete list of all mcc command options, seemcc in the MATLAB
Compiler User’s Guide documentation.

-W
Tells the compiler to create a wrapper function. This option takes
a string argument that specifies the following characteristics of
the component.

-W String Elements Description

dotnet: Keyword that tells the compiler the type of
component to create, followed by a colon. Specify
dotnet to create a .NET component.

10-8

mcc

-W String Elements Description

component_name Specifies the name of the component and its
namespace, which is a period-separated list, such
as companyname.groupname.component.

class_name Specifies the name of the .NET class to be created.

0.0|2.0 Specifies the version of the .NET Framework you
want to use to compile the component. You can
specify either:
0.0 — Use the latest supported version on the
target machine.
2.0— Use Version 2.0 of the framework.

Private|Encryption_Key_Path Specifies whether the component to be created is a
private assembly or a shared assembly. To create a
shared assembly, you must specify the full path to
the encryption key file used to sign the assembly.

local|remote Specifies the remoting type of the component.
See Chapter 7, “Sharing Components Across
Distributed Applications Using .NET Remoting”.

file1 [file2...fileN]
Specifies the M-file or M-files that are to be encapsulated as
methods in the class being created (class_name).

class{class_name:file1 [,file2,...,fileN]},...
(Optional) Specifies additional classes that you want to include
in the component. To use this option, you specify the class name,
followed by a colon, and then the names of the files you want to
include in the class. You can include this multiple times to specify
multiple classes.

[-d output_dir_path]
(Optional) Tells the builder to create a folder and copy the output
files to it. If you use mcc instead of the Deployment Tool, the
project_folder\src and project_folder\distrib folders are
not automatically created.

10-9

mcc

-C
Overrides automatically embedding the CTF archive in
builder-generated .NET or COM components. See for details.

-T
Specifies the output type. To create a .NET component, specify
the keyword link:lib, which links objects into a shared library
(DLL).

10-10

11

Creating and Installing
COM Components

• “Building a Deployable Application” on page 11-2

• “About Embedded CTF Archives” on page 11-4

• “Using the Command-Line Interface” on page 11-5

• “Installing COM Components on a Target Computer” on page 11-8

11 Creating and Installing COM Components

Building a Deployable Application
1 If you have not already done so, execute the following command at the
MATLAB prompt:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

2 Open the Deployment Tool window using this command:

deploytool

3 Click the New Project button in the toolbar to open the New Project
Settings dialog box.

4 Specify the name and location for the project.

5 Add files that you want to encapsulate by dragging them to the Deployment

Tool or clicking the button in the toolbar.

6 Optional. Add classes by clicking the Add Classes button in the toolbar.

7 Optional. Click the button in the toolbar to specify various properties
for building and packaging your component.

8 Save the project by clicking the Save Project button in the toolbar.

9 Build the project by clicking the Build button in the toolbar.

10 Package the project by clicking the Package button in the toolbar. The
package is a self-extracting executable named componentname.exe.

Files in the Self-Extracting Executable

File Purpose

componentname_projectversion Component that encapsulates
M-code.

11-2

Building a Deployable Application

(Continued)

File Purpose

_install.bat Script run by the self-extracting
executable.

MCRInstaller.exe Self-extracting MATLAB
Compiler Runtime library utility;
platform-dependent file that must
correspond to the end user’s
platform.

MCRInstaller.exe installs
MATLAB Compiler Runtime
(MCR), which users of your
component need to install on the
target machine once per release.

11 Distribute the self-extracting executable to your users.

11-3

11 Creating and Installing COM Components

About Embedded CTF Archives
As of R2008b, the MATLAB Builder NE product now embeds the CTF archive
within generated components, by default. This offers convenient deployment
of a single output file since all encrypted M-file data is now contained within
the component.

For information on how to produce a separate CTF archive (the default
behavior before R2008b), see “Overriding Default CTF Archive Embedding for
Components Using the MCR Component Cache” on page 2-24.

11-4

Using the Command-Line Interface

Using the Command-Line Interface
A MATLAB class cannot be directly compiled into a COM object. You can,
however, use a user-generated class inside an M-file and build a COM object
from that file. You can use the MATLAB command-line interface instead of
the GUI to create COM objects. Do this by issuing the mcc command with
options. If you use mcc, you do not create a project.

Note See the MATLAB Compiler documentation for a complete description
of the mcc command and its options.

The following table provides an overview of some mcc options related to
components, along with syntax and examples of their usage.

Using the Command Line to Create COM Components

Action to Perform mcc Option to Use Description

-W com The W option with com as the type controls the
generation of wrapper files, which you can use to
support components.

Syntax
mcc -W
'com:<component_name>[,<class_name>[,<major>.<minor>]]'

An unspecified <class_name> defaults to <component_name>, and an
unspecified version number defaults to the latest version built or 1.0, if
there is no previous version.

Create component
that has one class.

Example
mcc -W 'com:mycomponent,myclass,1.0' -T link:lib foo.m bar.m

The example creates a COM component called mycomponent, which
contains a single COM class named myclass with methods foo and bar,
and a version of 1.0.

11-5

11 Creating and Installing COM Components

Using the Command Line to Create COM Components (Continued)

Action to Perform mcc Option to Use Description

Not needed A separate COM named <class_name> is created
for each class argument that is passed.

Following the <class_name> parameter is a
comma-separated list of source files that are
encapsulated as methods for the class.

Syntax
class{<class_name>:[file, [file,...]]}

Add additional
classes to a COM
component.

Example
mcc -B 'ccom:mycomponent,myclass,1.0'
foo.m bar.m class{myclass2:foo2.m, bar2.m}

The example creates a COM component named mycomponent with two
classes: myclass has methods foo and bar, and myclass2 has methods
foo2 and bar2. The version is version 1.0.

-B ccom: Uses the bundle file.

Syntax
mcc -B '<filename>'[:<a1>,<a2>,...,<an>]

Simplify the
command-line input
for components.

Example
mcc -B 'ccom:mycomponent,myclass,1.0' foo.m bar.m

-S By default, a new MCR instance is created for each
instance of each COM class in the component. Use
-S to change the default.

This option tells the builder to create a single
MCR at the time when the first COM class is
instantiated. This MCR is reused and shared
among all subsequent class instances, resulting
in more efficient memory usage and eliminating
the MCR startup cost in each subsequent class
instantiation.
When using -S, note that all class instances
share a single MATLAB workspace and share
global variables in the M-files used to build the
component. Therefore, properties of a COM class

Control how each
COM class uses the
MCR.

11-6

Using the Command-Line Interface

Using the Command Line to Create COM Components (Continued)

Action to Perform mcc Option to Use Description

behave as static properties instead of instance-wise
properties.

Note The default behavior dictates that a new
MCR be created for each instance of a class, so
when the class is destroyed, the MCR is destroyed
as well. If you want to retain the state of global
variables (such as those allocated for drawing
figures, for instance), use the -S option.

Example
mcc -S -B 'ccom:mycomponent,myclass,1.0' foo.m bar.m

The example creates a COM component called mycomponent containing
a single COM class named myclass with methods foo and bar, and
a version of 1.0.

When multiple instances of this class are instantiated in an application,
only one MCR is initialized, and it is shared by each instance.

-d The \src and \distrib subfolders are needed to
package components.

Create subfolders
needed for
deployment and
copy associated files
to them.

Syntax
-d foldername

11-7

11 Creating and Installing COM Components

Installing COM Components on a Target Computer
To install and deploy a COM object created with MATLAB Builder NE,
perform the following steps:

1 Install the MATLAB Compiler Runtime as described in the MATLAB
Compiler User’s Guide.

2 Build the package as described in “Building a Deployable Application”
on page 11-2.

3 Copy the package to the target computer and run the package.

4 From a Windows command prompt on the target system, navigate to the
folder where you saved the package. If you use the command dir, you
should see the .dll created for your COM object. You will need to register
the .dll manually using the command regsvr32, as follows:

regsvr32 myCom_1_0.dll

11-8

12

Programming with COM
Components Created by
the MATLAB Builder NE
Product

• “General Techniques” on page 12-2

• “Registering and Referencing the Utility Library” on page 12-4

• “Creating an Instance of a Class in Microsoft® Visual Basic” on page 12-5

• “Calling the Methods of a Class Instance” on page 12-8

• “Calling a COM Object in a Visual C++ Program” on page 12-11

• “Using a COM Component in a .NET Application” on page 12-14

• “Adding Events to COM Objects” on page 12-21

• “Passing Arguments ” on page 12-26

• “Using Flags to Control Array Formatting and Data Conversion” on page
12-29

• “Using MATLAB Global Variables in Microsoft® Visual Basic” on page 12-36

• “Blocking Execution of a Console Application that Creates Figures” on
page 12-39

• “Obtaining Registry Information” on page 12-42

• “Handling Errors During a Method Call” on page 12-44

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

General Techniques
After you package and install a COM component created by the MATLAB
Builder NE product, you can access the component in any program that
supports COM, such as Microsoft Visual Basic, Microsoft® Visual C++®, or
Visual C#.

Your code module must do the following:

• Load the components created by the builder

- “Registering and Referencing the Utility Library” on page 12-4

- “Creating an Instance of a Class in Microsoft® Visual Basic” on page 12-5

• Call methods of the component class

- “Calling the Methods of a Class Instance” on page 12-8

- “Calling a COM Object in a Visual C++ Program” on page 12-11

- “Adding Events to COM Objects” on page 12-21

- “Obtaining Registry Information” on page 12-42

• Deal with data conversion and parameter passing

- “Passing Arguments ” on page 12-26

- “Using Flags to Control Array Formatting and Data Conversion” on
page 12-29

- “Using MATLAB Global Variables in Microsoft® Visual Basic” on page
12-36

• Process errors

- “Handling Errors During a Method Call” on page 12-44

12-2

General Techniques

Note These topics provide general information on how to integrate COM
components created with the builder into your COM-compliant programs.
The presentation focuses on the special programming techniques needed for
components based on the MATLAB product and generated by the builder. It
assumes that you have a working knowledge of the programming language
used in these programs.

For information about programming with COM objects in Microsoft Visual
Studio, see articles in the MSDN Library, such as Calling COM Components
from .NET Clients.

12-3

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/callcomcomp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/callcomcomp.asp

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Registering and Referencing the Utility Library
The MWComUtil library provided with the MATLAB Builder NE product is
freely distributable. The MWComUtil library includes seven classes and three
enumerated types. These utilities are required for array processing, and they
provide type definitions used in data conversion.

The library is contained in the file mwcomutil.dll. It must be registered once
on each machine that uses components created with the builder.

Register the MWComUtil library at the DOS command prompt with the
command:

mwregsvr mwcomutil.dll

To use the types in the library, make sure that you reference the MWComUtil
library in your current project:

1 Select Tools > References.

2 Select MWComUtil 7.5 Type Library.

Note You must specify the full path of the component when calling mwregsvr,
or make the call from the folder in which the component resides.

12-4

Creating an Instance of a Class in Microsoft® Visual Basic®

Creating an Instance of a Class in Microsoft Visual Basic

In this section...

“Advantages and Disadvantages” on page 12-5

“CreateObject Function” on page 12-5

“Microsoft® Visual Basic New Operator” on page 12-6

“Advantages of Each Technique” on page 12-7

“Declaring a Reusable Class Instance” on page 12-7

Advantages and Disadvantages
Each technique listed here has advantages and disadvantages.

For an example of creating a class instance in Microsoft Visual C++, see
“Calling a COM Object in a Visual C++ Program” on page 12-11.

CreateObject Function
This method uses the Microsoft Visual Basic application program interface
(API) CreateObject function to create an instance of the class.

1 Dimension a variable of type Object to hold a reference to the class
instance.

2 Call CreateObject with the Program ID (ProgID) for the class as an
argument.

Here is a programming example:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
' (call some methods on aClass)
Exit Function

Handle_Error:

12-5

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

foo = Err.Description
End Function

Microsoft Visual Basic New Operator
This method uses the Microsoft Visual Basic New operator on a variable
explicitly dimensioned as the class to be created.

1 Make sure that you reference the type library containing the class in the
current Visual Basic project.

a Open the Visual Basic editor.

b Select Project > References > Available References.

c Select the necessary type library.

2 Dimension the class instance.

3 Use New to instantiate the class with a particular name.

The following sample function, foo, shows how to use the New operator to
create a class instance:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

In this example, the class instance could be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that could occur if other libraries in the current
project contain types named myclass.

12-6

Creating an Instance of a Class in Microsoft® Visual Basic®

Advantages of Each Technique
Both techniques (using CreateObject and using New) are equivalent in the
way they function, but each has different advantages. The first technique
does not require a reference to the type library in the Visual Basic project,
while the second results in faster code execution. The second technique has
the added advantage of enabling Auto-List-Members and Auto-Quick-Info
in the Visual Basic editor to help you work with your classes.

Declaring a Reusable Class Instance
In the previous examples, the class instance used to call the method is a
local variable within a procedure. Thus a new class instance is created and
destroyed for each call to the method. As an alternative, you can declare a
single module-scoped class instance that is reused by all function calls. The
next example shows this technique:

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle_Error
If aClass Is Nothing Then

Set aClass = New mycomponent.myclass
End If
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

12-7

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Calling the Methods of a Class Instance

In this section...

“Standard Mapping Technique” on page 12-8

“Variant” on page 12-9

“Examples of Passing Input and Output Parameters” on page 12-9

Standard Mapping Technique
After you create a class instance, you can call the class methods to access the
encapsulated M-functions. The MATLAB Builder NE product uses a standard
technique to map the original MATLAB function syntax to the method’s
argument list. This standard mapping technique is as follows:

• nargout

When a method has output arguments, the first argument is always
nargout, which is of type Long. This input parameter passes the normal
MATLAB nargout parameter to the encapsulated function and specifies
how many outputs are requested. Methods that do not have output
arguments do not pass a nargout argument.

• Output parameters

Following nargout are the output parameters listed in the same order as
they appear on the left side of the original MATLAB function.

• Input parameters

Next come the input parameters listed in the same order as they appear on
the right side of the original MATLAB function.

For example, the most generic MATLAB function is:

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

This function maps directly to the following Microsoft Visual Basic signature:

Sub foo(nargout As Long, _
Y1 As Variant, _
Y2 As Variant, _

12-8

Calling the Methods of a Class Instance

.

.
varargout As Variant, _
X1 As Variant, _
X2 As Variant, _
.
.
varargin As Variant)

See “Calling Conventions” on page 14-23 for more details and examples of the
standard mapping from MATLAB functions to COM class method calls.

Variant
All input and output arguments are typed as Variant, the default Visual
Basic data type. The Variant type can hold any of the basic Visual Basic
types, arrays of any type, and object references. See “Data Conversion” on
page 14-9 for details about the conversion of any basic type to and from
MATLAB data types.

In general, you can supply any Visual Basic type as an argument to a class
method, with the exception of Visual Basic User Defined Types (UDTs).

When you pass a simple Variant type as an output parameter, the called
method allocates the received data and frees the original contents of the
Variant. In this case it is sufficient to dimension each output argument as a
single Variant. When an object type (like an Excel® Range) is passed as an
output parameter, the object reference is passed in both directions, and the
object’s Value property receives the data.

Examples of Passing Input and Output Parameters
The following examples show how to pass input and output parameters to the
builder component class methods in Visual Basic.

The first example is a function, foo, that takes two arguments and returns one
output argument. The foo function dispatches a call to a class method that
corresponds to a MATLAB function of the form function y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant

12-9

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Dim aClass As Object
Dim y As Variant

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,x1,x2)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The second example rewrites the foo function as a subroutine:

Sub foo(Xout As Variant, X1 As Variant, X2 As Variant)
Dim aClass As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Xout,X1,X2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

12-10

Calling a COM Object in a Visual C++® Program

Calling a COM Object in a Visual C++ Program

In this section...

“Using the MATLAB® Builder NE Product to Create the Object” on page
12-11

“Using the Component in a Visual C++ Program” on page 12-12

Note You must choose a Microsoft compiler to compile and use any COM
object.

Using the MATLAB Builder NE Product to Create the
Object
Build the COM object as follows:

1 Start the MATLAB product.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

3 Open the MATLAB Editor and create a file named adddoubles.m with
the following M-code:

function z=adddoubles(x,y)
z=x+y;

4 In the MATLAB Command Window, issue the following command to open
the Deployment Tool:

deploytool

5 Create a project named mycomponent in any location you want.

12-11

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

6 Add adddoubles.m to the mycomponentclass folder. This means that the
MATLAB function, adddoubles, will be a method in mycomponentclass.

7 Click the icon in the Deployment Tool toolbar.

The builder generates a self-registering COM object that you can use in
your Visual C++® code.

Using the Component in a Visual C++ Program
Use the COM object you have created as follows:

1 Create a Visual C++ program in a file named matlab_com_example.cpp
with the following code:

#include <iostream>

using namespace std;

// include the following files generated by MATLAB Builder NE

#include "mycomponent\src\mycomponent_idl.h"

#include "mycomponent\src\mycomponent_idl_i.c"

int main() {

// Initialize argument variables

VARIANT x, y, out1;

//Initialize the COM library

HRESULT hr = CoInitialize(NULL);

//Create an instance of the COM object you created

Imycomponentclass *pImycomponentclass;

hr=CoCreateInstance

(CLSID_mycomponentclass, NULL, CLSCTX_INPROC_SERVER, IID_Imycomponentclass,

(void **)&pImycomponentclass);

// Set the input arguments to the COM method

x.vt=VT_R8;

y.vt=VT_R8;

x.dblVal=7.3;

y.dblVal=1946.0;

// Access the method with arguments and receive the output out1

hr=(pImycomponentclass -> adddoubles(1,&out1,x,y));

// Print the output

cout << "The input values were " << x.dblVal << " and "

12-12

Calling a COM Object in a Visual C++® Program

<< y.dblVal << ".\n";

cout << "The output of feeding the inputs into the adddoubles method is "

<< out1.dblVal << ".\n";

// Uninitialize COM

CoUninitialize();

return 0;

}

2 In the MATLAB Command Window, compile the program as follows:

mbuild matlab_com_example.cpp

When you run the executable, the program displays two numbers and their
sum, as returned by the COM object’s adddoubles.

12-13

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Using a COM Component in a .NET Application

In this section...

“Overview” on page 12-14

“C# Implementation” on page 12-14

“Microsoft® Visual Basic Implementation” on page 12-17

Overview
The following examples demonstrate the optimal fitting of a nonlinear function
to a set of data in both C# and Microsoft Visual Basic implementations.

Note in particular how memory is freed and allocated. Use these examples as
models when using COM components in your own .NET applications.

C# Implementation

// ***

//

// CurveFitApp.cs

//

// This file is an example for using MATLAB COM component inside .NET application.

//

// Copyright 2001-2006 The MathWorks, Inc.

//

// ***

using System;

using CurveFitDemoComp;

namespace MathWorks.Demo.CurveFitApp

{

/// args[0] - a positive integer representing number of

/// data points.

/// class CurveFitApp

{

12-14

Using a COM Component in a .NET Application

/// /// The main entry point for the application.

/// [STAThread]

static void Main(string[] args)

{

CurveFitClass curveFitting = null;

try

{

// Get user specified command line arguments or

// set default

int numberOfDataPts= (0 != args.Length)

? System.Int32.Parse(args[0]) : 4;

// Input that will be passed to the COM method

double[] xData = new double[numberOfDataPts];

double[] yData = new double[numberOfDataPts];

for(int i=1; i<= numberOfDataPts; i++)

{

xData[i-1] = i;

yData[i-1] = i;

}

// Objects that will be returned by the COM method

object coefficients = new object();

object lambda = new object();

// Create the curve fit object

curveFitting = new CurveFitClass();

if(curveFitting != null)

{

curveFitting.MWFlags.ArrayFormatFlags.TransposeOutput =

true;

// Call the COM method

curveFitting.fitdemo(2, ref coefficients,

ref lambda, xData, yData);

// Display values of co-efficients returned by COM method

Console.WriteLine("\nCo-efficient:\n");

// Convert the coefficients array to a two

12-15

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

// dimensional native double array

if(coefficients.GetType().IsArray)

{

System.Array coeffArray =

(System.Array)coefficients;

// Display the array elements:

for (int i= coeffArray.GetLowerBound(0);

i <= (int)coeffArray.GetUpperBound(0); i++)

for (int j= coeffArray.GetLowerBound(1);

j <= (int)coeffArray.GetUpperBound(1); j++)

Console.WriteLine("Result({0},{1})= {2}", i, j,

coeffArray.GetValue(i,j));

}

// Display values of lambda returned by COM method

Console.WriteLine("\nLambda:\n");

// Convert the lambda array to a two dimensional

// native double array

if(lambda.GetType().IsArray)

{

System.Array lambdaArray = (System.Array)lambda;

// Display the array elements:

for (int i= lambdaArray.GetLowerBound(0);

i <= (int)lambdaArray.GetUpperBound(0); i++)

for (int j= lambdaArray.GetLowerBound(1);

j <= (int)lambdaArray.GetUpperBound(1); j++)

Console.WriteLine("Result({0},{1})= {2}", i, j,

lambdaArray.GetValue(i,j));

}

}

Console.ReadLine(); // Wait for user to exit application

}

catch(System.Runtime.InteropServices.COMException exception)

{

Console.WriteLine("COM Error: {0}", exception);

}

catch(Exception exception)

12-16

Using a COM Component in a .NET Application

{

Console.WriteLine("Error: {0}", exception);

}

finally

{

// Free COM object

if(curveFitting != null)

System.Runtime.InteropServices.Marshal.ReleaseComObject(curveFitting);

}

}

}

}

Microsoft Visual Basic Implementation

' ***

'

' CurveFitApp.vb

'

' This file is an example for using MATLAB COM component inside .NET Visaul

' Basic application.

'

' Copyright 2001-2006 The MathWorks, Inc.

'

' ***

Imports System

Imports CurveFitDemoComp

Namespace MathWorks.Demo.CurveFitApp

' <remarks>

' args[0] - a positive integer representing number of data points.

' </remarks>

Public Class CurveFitApp

#Region " MAIN "

' <summary>

12-17

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Dim curveFitting As CurveFitClass = Nothing

Try

' Get user specified command line arguments or set default

Dim numberOfDataPts As Integer

If (0 <> args.Length) Then

numberOfDataPts = System.Int32.Parse(args(0))

Else

numberOfDataPts = 4

End If

' Input that will be passed to the COM method

Dim xData() As Double = New Double(numberOfDataPts - 1) {}

Dim yData() As Double = New Double(numberOfDataPts - 1) {}

For i As Integer = 1 To numberOfDataPts

xData(i - 1) = i

yData(i - 1) = i

Next i

' Objects that will be returned by the COM method

Dim coefficients As Object = New Object

Dim lambda As Object = New Object

' Create the curve fit object

curveFitting = New CurveFitClass

If Not (curveFitting Is Nothing) Then

curveFitting.MWFlags.ArrayFormatFlags.TransposeOutput = True

' Call the COM method

curveFitting.fitdemo(2, coefficients, lambda, xData, yData)

' Display values of co-efficients returned by COM method

Console.WriteLine("{0}Co-efficient:{1}", Chr(10), Chr(10))

' Convert the coefficients array to a two dimensional

12-18

Using a COM Component in a .NET Application

' native double array

If (coefficients.GetType().IsArray) Then

Dim coeffArray As System.Array = CType(coefficients,

System.Array)

' Display the array elements:

For i As Integer = coeffArray.GetLowerBound(0)

To coeffArray.GetUpperBound(0)

For j As Integer = coeffArray.GetLowerBound(1)

To coeffArray.GetUpperBound(1)

Console.WriteLine("Result({0},{1})= {2}", i, j,

coeffArray.GetValue(i, j))

Next j

Next i

End If

' Display values of lambda returned by COM method

Console.WriteLine("{0}Lambda:{1}", Chr(10), Chr(10))

' Convert the lambda array to a two dimensional native

' double array

If (lambda.GetType().IsArray) Then

Dim lambdaArray As System.Array = CType(lambda,

System.Array)

' Display the array elements:

For i As Integer = lambdaArray.GetLowerBound(0)

To lambdaArray.GetUpperBound(0)

For j As Integer = lambdaArray.GetLowerBound(1

) To lambdaArray.GetUpperBound(1)

Console.WriteLine("Result({0},{1})= {2}", i, j,

lambdaArray.GetValue(i, j))

Next j

Next i

End If

End If

Console.ReadLine() ' Wait for user to exit application

12-19

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Catch exception As System.Runtime.InteropServices.COMException

Console.WriteLine("COM Error: {0}", exception)

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

Finally

' Free COM object

If Not (curveFitting Is Nothing) Then

System.Runtime.InteropServices.Marshal.ReleaseComObject(curveFitting)

End If

End Try

End Sub

#End Region

End Class

End Namespace

12-20

Adding Events to COM Objects

Adding Events to COM Objects

In this section...

“MATLAB Language Pragma” on page 12-21

“Using a Callback with a Microsoft® Visual Basic Event” on page 12-22

MATLAB Language Pragma
The MATLAB Builder NE product supports events, or callbacks, through a
MATLAB language pragma. A pragma is a directive to the builder, beyond
what is conveyed in the MATLAB language itself. The pragma for adding
events is #event.

The MATLAB product interprets the %#event statement as a comment. But
when the builder encapsulates a function, the #event pragma tells the builder
that the function requires an outgoing interface and an event handler.

Note The #event pragma is supported only for COM components built with
MATLAB Builder NE. You can not use this feature with .NET components
created by MATLAB Builder NE or COM components built with the MATLAB
Builder EX product.

To use the #event pragma:

1 Write the code for a MATLAB function stub that serves as the prototype for
the event. This function stub is the event function.

2 Build the COM component as usual. Make sure that you specify the event
function you wrote in the MATLAB product as a method in the component
class.

3 In your application, add the code to implement the event handler (the event
handler belongs to the COM object created by the builder). The code for
the event handler should implement the event function, or function stub,
that you wrote in MATLAB.

12-21

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

When an encapsulated M-function (now a method in a COM object in your
application) calls the event function, the call is dispatched to the event
handler in the application.

Some examples of how you might use callbacks in your code are

• To give the application periodic feedback during a long-running calculation
by an encapsulated M-function. For example, if you have a task that
requires n iterations, you might signal an event to increment a progress
bar in the user interface on each iteration.

• To signal a warning during a calculation but continue execution of the task.

• To return intermediate results of a calculation to the user and continue
execution of the task.

Using a Callback with a Microsoft Visual Basic Event
The example in this topic shows how to use a callback in conjunction with a
Microsoft Visual Basic ProgressBar control.

The MATLAB function iterate runs through n iterations and fires an event
every inc iterations. When the function finishes, it returns a single output.
To simulate actually doing something, the sample code includes a pause
statement in the main loop so that the function waits for 1 second in each
iteration.

The sample includes MATLAB functions iterate.m and progress.m.

iterate.m

function [x] = iterate(n,inc)
%initialize x
x = 0;
% Run n iterations, callback every inc time
k = 0;
for i=1:n

k = k + 1;
if k == inc

progress(i);
k = 0;

end;

12-22

Adding Events to COM Objects

% Do some work on x...
x = x + 1;
% Pause for 1 second to simulate doing
% something
pause(1);

end;

progess.m

function progress(i)
%#event
i

The iterate function runs through n iterations and calls the progress
function every inc iterations, passing the current iteration number as an
argument. When this function is executed in MATLAB, the value of i appears
each time the progress function gets called.

Suppose you create a the builder component that has these two functions
included as class methods. For this example the component has a single class
named myclass. The resulting COM class has a method iterate and an
event progress.

To receive the event calls, implement a “listener” in the application. The
Visual Basic syntax for the event handler for this example is

Sub aClass_progress(ByVal i As Variant)

where aClass is the variable name used for your class instance. The ByVal
qualifier is used on all input parameters of an event function. To enable
the listening process, dimension the aClass variable with the WithEvents
keyword.

This example uses a simple Visual Basic form with three TextBox controls,
one CommandButton control, and one ProgressBar control. The first text box,
Text1, inputs the number of iterations, stored in the form variable N. The
second text box, Text2, inputs the callback increment, stored in the variable
Inc. The third text box, Text3, displays the output of the function when it
finishes executing. The command button, Command1, executes the iterate

12-23

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

method on your class when pressed. The progress bar control, ProgressBar1,
updates itself in response to the progress event.

'Form Variables
Private WithEvents aClass As myclass 'Class instance
Private N As Long 'Number of iterations
Private Inc As Long 'Callback increment
Private Sub Form_Load()
'When form is loaded, create new myclass instance

Set aClass = New myclass
'Initialize variables
N = 2
Inc = 1

End Sub
Private Sub Text1_Change()
'Update value of N from Text1 text whenever it changes

On Error Resume Next
N = CLng(Text1.Text)
If Err <> 0 Then N = 2
If N < 2 Then N = 2

End Sub
Private Sub Text2_Change()
'Update value of Inc from Text2 text whenever it changes

On Error Resume Next
Inc = CLng(Text2.Text)
If Err <> 0 Then Inc = 1
If Inc <= 0 Then Inc = 1

End Sub
Private Sub Command1_Click()
'Execute function whenever Execute button is clicked

Dim x As Variant
On Error GoTo Handle_Error
'Initialize ProgressBar
ProgressBar1.Min = 1
ProgressBar1.Max = N
Text3.Text = ""
'Iterate N times and call back at Inc intervals
Call aClass.iterate(1, x, CDbl(N), CDbl(Inc))
Text3.Text = Format(x)
Exit Sub

12-24

Adding Events to COM Objects

Handle_Error:
MsgBox (Err.Description)

End Sub
Private Sub aClass_progress(ByVal i As Variant)
'Event handler. Called each time the iterate function
'calls the progress function. Progress bar is updated
'with the value passed in, causing the control to advance.

ProgressBar1.Value = i
End Sub

12-25

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Passing Arguments

In this section...

“Overview” on page 12-26

“Creating and Using a varargin Array in Microsoft® Visual Basic Programs”
on page 12-26

“Creating and Using varargout in Microsoft® Visual Basic Programs” on
page 12-27

“Passing an Empty varargin From Microsoft® Visual Basic Code” on page
12-28

Overview
When it encapsulates MATLAB functions, the MATLAB Builder NE product
adds the MATLAB function arguments to the argument list of the class
methods it creates. Thus, if a MATLAB function uses varargin and/or
varargout, the builder adds these arguments to the argument list of the
class method. They are added at the end of the argument list for input and
output arguments.

You can pass multiple arguments as a varargin array by creating a Variant
array, assigning each element of the array to the respective input argument.

See “Producing a COM Class” on page 14-23 for more information about
mapping of input and output arguments.

Creating and Using a varargin Array in Microsoft
Visual Basic Programs
The following example creates a varargin array to call a method
encapsulating a MATLAB function of the form y = foo(varargin).

The MWUtil class included in the MWComUtil utility library provides the
MWPack helper function to create varargin parameters.

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
x4 As Variant, x5 As Variant) As Variant

12-26

Passing Arguments

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,v)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

Creating and Using varargout in Microsoft Visual
Basic Programs
The next example processes a varargout argument as three separate
arguments. This function uses the MWUnpack function in the utility library.

The MATLAB function used is varargout = foo(x1,x2).

Sub foo(Xout1 As Variant, Xout2 As Variant, Xout3 As Variant, _
Xin1 As Variant, Xin2 As Variant)

Dim aClass As Object
Dim aUtil As Object
Dim v As Variant

On Error Goto Handle_Error
aUtil = CreateObject("MWComUtil.MWUtil")
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Xin1,Xin2)
Call aUtil.MWUnpack(v,0,True,Xout1,Xout2,Xout3)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

12-27

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

End Sub

Passing an Empty varargin From Microsoft Visual
Basic Code
In MATLAB, varargin inputs to functions are optional, and may be present
or omitted from the function call. However, from Microsoft Visual Basic,
function signatures are more strict—if varargin is present among the
MATLAB function inputs, the VBA call must include varargin, even if you
want it to be empty. To pass in an empty varargin, pass the Null variant,
which is converted to an empty MATLAB cell array when passed.

Example: Passing an Empty varargin From VBA Code
The following example illustrates how to pass the null variant in order to pass
an empty varargin:

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
x4 As Variant, x5 As Variant) As Variant

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")

'Call aClass.foo(1,y,v)
Call aClass.foo(1,y,Null)

foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

12-28

Using Flags to Control Array Formatting and Data Conversion

Using Flags to Control Array Formatting and Data
Conversion

In this section...

“Overview” on page 12-29

“Array Formatting Flags” on page 12-30

“Using Array Formatting Flags” on page 12-30

“Using Data Conversion Flags” on page 12-33

“Special Flags for Some Microsoft® Visual Basic Types” on page 12-35

Overview
Generally, you should write your application code so that it matches the
arguments (input and output) of the MATLAB functions that are encapsulated
in the COM objects that you are using. The mapping of arguments from the
MATLAB product to Microsoft Visual Basic is fully described in MATLAB®

to COM VARIANT Conversion Rules on page 14-12 and COM VARIANT to
MATLAB® Conversion Rules on page 14-17.

In some cases it is not possible to match the two kinds of arguments exactly;
for example, when existing MATLAB code is used in conjunction with a
third-party product such as Microsoft Excel. For these and other cases, the
builder supports formatting and conversion flags that control how array data
is formatted in both directions (input and output).

When it creates a component, the builder includes a component property
named MWFlags. The MWFlags property is readable and writable.

The MWFlags property consists of two sets of constants: array formatting flags
and data conversion flags. Array formatting flags affect the transformation of
arrays, whereas data conversion flags deal with type conversions of individual
array elements.

12-29

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Array Formatting Flags
The following tables provide a quick overview of how to use array formatting
flags to specify conversions for input and output arguments.

Name of Flag Possible Values of Flag Results of Conversion

mwArrayFormatMatrix
(default)

MATLAB matrix from general
Variant data.

mwArrayFormatCell MATLAB cell array from general
Variant data.

InputArrayFormat

Array data from an Excel range is coded in Visual Basic as an
array of Variant. Since MATLAB functions typically have matrix
arguments, using the default setting makes sense when you are
dealing with data from Excel.

mwArrayFormatAsIs Array of Variant

Converts arrays according to the default conversion rules listed in
MATLAB® to COM VARIANT Conversion Rules on page 14-12.

mwArrayFormatMatrix A Variant containing an array of
a basic type.

OutputArrayFormat

mwArrayFormatCell MATLAB cell array from general
Variant data.

AutoResizeOutput When this flag is set, the target range automatically resizes to fit
the resulting array. If this flag is not set, the target range must
be at least as large as the output array or the data is truncated.
Use this flag for Excel Range objects passed directly as output
parameters.

TransposeOutput Transposes all array output. Use this flag when dealing with an
encapsulated M-function whose output is a one-dimensional array.
By default, the MATLAB product handles one-dimensional arrays
as 1-by-n matrices (that is, as row vectors). Change this default
with the TransposeOutput flag if you prefer column output.

Using Array Formatting Flags
To use the following example, make sure that you reference the MWComUtil
library in the current project:

12-30

Using Flags to Control Array Formatting and Data Conversion

1 Select Tools > References.

2 Click MWComUtil 7.5 Type Library.

Consider the following Microsoft Visual Basic function definition for foo:

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle_Error
var1(1,1) = 11#
var1(1,2) = 12#
var1(2,1) = 21#
var1(2,2) = 22#
x(1,1) = 11
x(1,2) = 12
x(2,1) = 21
x(2,2) = 22
var2 = x
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,var1)
Call aClass.foo(1,y2,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The example has two Variant variables, var1 and var2. These two variables
contain the same numerical data, but internally they are structured
differently; one is a 2-by-2 array of variant and the other is a 1-by-1 array of
variant. The variables are described in the following table.

Scenario var1 var2

Numerical data
11 12
21 22

11 12
21 22

12-31

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Scenario var1 var2

Internal structure in
Visual Basic

2-by-2 array of Variant.
Each variant is a
1-by-1 array of Double.

1-by-1 Variant, which
contains a 2-by-2 array
of Double

Result of conversion by
the builder according
to the default data
conversion rules

2-by-2 cell array. Each
element is a 1-by-1
array of double.

2-by-2 matrix. Each
element is a Double.

The InputArrayFormat flag controls how the arrays are handled. In this
example, the value for the InputArrayFormat flag is the default, which is
mwArrayFormatMatrix. The default causes an array to be converted to a
matrix. See the table for the result of the conversion of var2.

To specify a cell array (instead of a matrix) as input to the function call, set
the InputArrayFormat flag to mwArrayFormatCell instead of the default.
Do this in this example by adding the following line after creating the class
and before the method call:

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

Setting the flag to mwArrayFormatCell causes all array input to the
encapsulated M-function to be converted to cell arrays.

Modifying Output Format
Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

Output Format in VBScript
When calling a COM object in VBScript you need to make sure that you set
MWFlags for the COM object to specify cell array for the output. Also, you
must use an enumeration (the enumeration value for a cell array is 2) to make
the specification (rather than specifying mwArrayFormatCell).

The following sample code shows how to accomplish this:

12-32

Using Flags to Control Array Formatting and Data Conversion

obj.MWFlags.ArrayFormatFlags.OutputArrayFormat = 2

Using Data Conversion Flags
Two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from Visual Basic to
MATLAB.

To use the following example, make sure that you reference the MWComUtil
library in the current project:

1 Select Tools > References.

2 Click MWComUtil 7.5 Type Library.

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double.

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1, var2 As Variant
Dim y As Variant

On Error Goto Handle_Error
var1 = 1
var2 = 2#
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,var1,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

If the original MATLAB function expects doubles for both arguments, this
code might cause an error. One solution is to assign a double to var1, but
this may not be possible or desirable. As an alternative, you can set the
CoerceNumericToType flag to mwTypeDouble, causing the data converter to
convert all numeric input to double. To do this, place the following line after
creating the class and before calling the methods:

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =

12-33

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

mwTypeDouble

The next example shows how to use the InputDateFormat flag, which controls
how the Visual Basic Date type is converted. The example sends the current
date and time as an input argument and converts it to a string.

Sub foo()
Dim aClass As mycomponent.myclass
Dim today As Date
Dim y As Variant

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
aClass. MWFlags.DataConversionFlags.InputDateFormat =

mwDateFormatString
Call aClass.foo(1,y,today)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The next example uses an MWArg object to modify the conversion flags for
one argument in a method call. In this case the first output argument (y1)
is coerced to a Date, and the second output argument (y2) uses the current
default conversion flags supplied by aClass.

Sub foo(y1 As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg

Dim today As Date

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
Set ytemp = New MWArg
ytemp.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp
Exit Sub

12-34

Using Flags to Control Array Formatting and Data Conversion

Handle_Error:
MsgBox(Err.Description)

End Sub

Special Flags for Some Microsoft Visual Basic Types
In general, you use the MWFlags class property to change specified behaviors
of the conversion from Microsoft Visual Basic Variant types to MATLAB
types, and vice versa. There are some exceptions — some types generated by
the builder have their own MWFlags property. When you use these particular
types, the method call behaves according to the settings of the type and not
of the class containing the method being called. The exceptions are for the
following types generated by the builder:

• MWStruct

• MWField

• MWComplex

• MWSparse

• MWArg

Note The MWArg class is supplied specifically for the case when a particular
argument needs different settings from the default class properties.

12-35

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Using MATLAB Global Variables in Microsoft Visual Basic
Class properties allow an object to retain an internal state between method
calls.

Global variables are variables that are declared in the MATLAB product with
the global keyword. The builder automatically converts all global variables
shared by the M-files that make up a class to properties on that class.

Properties are particularly useful when you have a large array containing
values that do not change often, but you need to operate on it frequently. In
this case, you can set the array once as a class property and operate on it
repeatedly without incurring the overhead of passing (and converting) the
data for passing to each method every time it is called.

The following example shows how to use a class property in a matrix
factorization class. The example develops a class that performs Cholesky, LU,
and QR factorizations on the same matrix. It stores the input matrix (coded
as A in MATLAB) as a class property so that it does not need to be passed
to the factorization routines.

Consider these three M-files.

Cholesky.m

function [L] = Cholesky()
global A;
if (isempty(A))

L = [];
return;

end
L = chol(A);

LUDecomp.m

function [L,U] = LUDecomp()
global A;
if (isempty(A))

L = [];
U = [];

12-36

Using MATLAB® Global Variables in Microsoft® Visual Basic®

return;
end
[L,U] = lu(A);

QRDecomp.m

function [Q,R] = QRDecomp()
global A;
if (isempty(A))

Q = [];
R = [];
return;

end
[Q,R] = qr(A);

These three files share a common global variable A. Each function performs a
matrix factorization on A and returns the results.

To build the class:

1 Create a new MATLAB Builder NE project named mymatrix with a version
of 1.0.

2 Add a single class called myfactor to the component.

3 Add the above three M-files to the class.

4 Build the component.

To test your application, make sure that you reference the library generated
by the builder in the current Visual Basic project:

1 Select Project > References in the Visual Basic main menu.

2 Click mymatrix 1.0 Type Library.

Use the following Visual Basic subroutine to test the myfactor class:

Sub TestFactor()
Dim x(1 To 2, 1 To 2) As Double
Dim C As Variant, L As Variant, U As Variant, _

12-37

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Q As Variant, R As Variant
Dim factor As myfactor

On Error GoTo Handle_Error
Set factor = New myfactor
x(1, 1) = 2#
x(1, 2) = -1#
x(2, 1) = -1#
x(2, 2) = 2#
factor.A = x
Call factor.cholesky(1, C)
Call factor.ludecomp(2, L, U)
Call factor.qrdecomp(2, Q, R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Run the subroutine, which does the following:

1 Creates an instance of the myfactor class

2 Assigns a double matrix to the property A

3 Calls the three factorization methods

12-38

Blocking Execution of a Console Application that Creates Figures

Blocking Execution of a Console Application that Creates
Figures

In this section...

“MCRWaitForFigures” on page 12-39

“Using MCRWaitForFigures to Block Execution” on page 12-40

MCRWaitForFigures
The MATLAB Builder NE product adds a MCRWaitForFigures method to each
class in the COM components that it creates. MCRWaitForFigures takes no
arguments. Your application can call MCRWaitForFigures any time during
execution.

The purpose of MCRWaitForFigures is to block execution of a calling program
as long as figures created in encapsulated M-code are displayed. Typically
you use MCRWaitForFigures when:

• There are one or more figures open that were created by an instance of a
COM object created by the builder.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When MCRWaitForFigures is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Caution Be careful when calling the MCRWaitForFigures method. Calling
this method from a Microsoft Visual Basic UI or from an interactive program
such as Microsoft Excel can hang the application. This method should be
called only from console-based programs.

12-39

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Using MCRWaitForFigures to Block Execution
The following example illustrates using MCRWaitForFigures from a Microsoft
Visual C++ console application. The example uses a COM object created by
the builder; the object encapsulates M-code that draws a simple plot.

1 Create a work folder for your source code. In this example, the folder is
D:\work\plotdemo.

2 Create the following M-file in this folder:

drawplot.m

function drawplot()
plot(1:10);

3 Use the builder to create a COM component with the following properties:

Component name plotdemo

Class name plotdemoclass

Version 1.0

Note Instead of using the Deployment Tool, you can create the component
by issuing the following command at the MATLAB prompt:

mcc -d 'D:\work\plotdemo\src' -v -B

'ccom:plotdemo,plotdemoclass,1.0' 'D:\Work\plotdemo\drawplot.m'

4 Create a Visual C++ program in a file named runplot.cpp with the
following code:

// Include the following files generated by
// MATLAB Builder NE:
#include "src\plotdemo_idl.h"
#include "src\plotdemo_idl_i.c"

int main()

12-40

Blocking Execution of a Console Application that Creates Figures

{
// Initialize the COM library
HRESULT hr = CoInitialize(NULL);
// Create an instance of the COM object you created
Iplotdemoclass* pIplotdemoclass = NULL;
hr = CoCreateInstance(CLSID_plotdemoclass, NULL,

CLSCTX_INPROC_SERVER, IID_Iplotdemoclass,
(void **)&pIplotdemoclass);

// Call the drawplot method
hr = pIplotdemoclass->drawplot();
// Block execution until user dismisses the figure window
hr = pIplotdemoclass->MCRWaitForFigures();
// Uninitialize COM
CoUninitialize();
return 0;

}

5 In the MATLAB Command Window, build the application as follows:

mbuild runplot.cpp

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to MCRWaitForFigures.
comment out the call, rebuild the application, and run it. In this case, the
figure is drawn and is immediately destroyed as the application exits.

12-41

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Obtaining Registry Information
When programming with COM components, you might need details about a
component. You can use componentinfo, which is a MATLAB function, to
query the system registry for details about any installed MATLAB Builder
NE component.

This example queries the registry for a component named mycomponent and
a version of 1.0. This component has four methods: mysum, randvectors,
getdates, and myprimes; two properties: m and n; and one event: myevent.

Info = componentinfo('mycomponent', 1, 0)

Info =

Name: 'mycomponent'
TypeLib: 'mycomponent 1.0 Type Library'

LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}'
MajorRev: 1
MinorRev: 0
FileName: 'D:\Work\ mycomponent\distrib\mycomponent_1_0.dll'
Interfaces: [1x1 struct]
CoClasses: [1x1 struct]

Info.Interfaces

ans =

Name: 'Imyclass'
IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}'

Info.CoClasses

ans =

Name: 'myclass'
CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}'
ProgID: 'mycomponent.myclass.1_0'

VerIndProgID: 'mycomponent.myclass'
InprocServer32:'D:\Work\mycomponent\distrib\mycomponent_1_0.dll'

12-42

Obtaining Registry Information

Methods: [1x4 struct]
Properties: {'m', 'n'}

Events: [1x1 struct]

Info.CoClasses.Events.M

ans =

function myevent(x, y)

Info.CoClasses.Methods

ans =

1x4 struct array with fields:
IDL
M
C
VB

Info.CoClasses.Methods.M

ans =

function [y] = mysum(varargin)

ans =

function [varargout] = randvectors()

ans =

function [x] = getdates(n, inc)

ans =

function [p] = myprimes(n)

The returned structure contains fields corresponding to the most important
information from the registry and type library for the component.

12-43

12 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Handling Errors During a Method Call
If your application generates an error while creating a class instance or
during a class method call, the current procedure creates an exception.

Microsoft Visual Basic provides an exception handling capability through
the On Error Goto <label> statement, in which the program execution
jumps to <label> when an error occurs. (<label> must be located in the
same procedure as the On Error Goto statement.) All errors in Visual Basic
are handled this way, including errors within the MATLAB code that you
have encapsulated into a COM object. An exception creates a Visual Basic
ErrObject object in the current context in a variable called Err.

See the Microsoft Visual Basic documentation for a detailed discussion on
Visual Basic Basic error handling.

12-44

13

Using COM Components
in Microsoft Visual Basic
Applications

• “Magic Square Example” on page 13-2

• “Creating an Excel Add-In: Spectral Analysis Example” on page 13-9

• “Univariate Interpolation Example” on page 13-24

• “Matrix Calculator Example” on page 13-32

• “Curve Fitting Example” on page 13-43

• “Bouncing Ball Simulation Example” on page 13-51

13 Using COM Components in Microsoft® Visual Basic® Applications

Magic Square Example

In this section...

“Example Overview” on page 13-2

“Creating the M-File” on page 13-2

“Using the Deployment Tool to Create and Build the Project” on page 13-3

“Creating the Microsoft® Visual Basic Project” on page 13-4

“Creating the User Interface” on page 13-4

“Creating the Executable in Microsoft® Visual Basic” on page 13-7

“Testing the Application” on page 13-7

“Packaging the Component” on page 13-8

Example Overview
This example uses a simple M-file that takes a single input and creates
a magic square of that size. It then builds a COM component using this
M-file as a class method. Finally, the example shows the integration of
this component into a standalone Microsoft Visual Basic application. The
application accepts the magic square size as input and displays the matrix in
a ListView control box.

Note ListView is a Windows Form control that displays a list of items with
icons. You can use a list view to create a user interface like the right pane
of Windows Explorer. See the MSDN Library for more information about
Windows Form controls.

Creating the M-File
To get started, create the M-file mymagic.m containing the following code:

function y = mymagic(x)
y = magic(x);

13-2

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriWinFormsControls.asp

Magic Square Example

Using the Deployment Tool to Create and Build the
Project

1 If you have not already done so, execute the following command in the
MATLAB product:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

2 Specify a COM component as follows:

a While in MATLAB, issue the following command to open Deployment
Tool:

deploytool

b Create a project with the following settings:

Setting Value

Project name magicdemo

Class name magicdemoclass

Project folder The name of your work folder followed by the
component name. In this example, that is
D:\Work\MagicSquareExample\magicdemo.

Generate Verbose
Output

Selected

c Locate your work folder and navigate to the MagicDemoComp folder, which
contains the M-file for the makesquare function. Add the makesquare.m
file to the project.

3 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output pane
of the Deployment Tool. The files that are needed for the component are

13-3

13 Using COM Components in Microsoft® Visual Basic® Applications

copied to two newly created folders, src and distrib, in the magicdemo
folder. A copy of the build log is placed in the src folder.

Creating the Microsoft Visual Basic Project

Note This procedure assumes that you are using Microsoft Visual Basic 6.0.

1 Start Visual Basic.

2 In the New Project dialog box, select Standard EXE as the project type
and click Open. This creates a new Visual Basic project with a blank form.

3 From the main menu, select Project > References to open the Project
References dialog box.

4 Selectmagicdemo 1.0 Type Library from the list of available components
and click OK.

5 Returning to the Visual Basic main menu, select Project > Components
to open the Components dialog box.

6 Select Microsoft Windows Common Controls 6.0 and click OK. You
will use the ListView control from this component library.

Creating the User Interface
After you create the project, add a series of controls to the blank form to create
a form with the following settings.

Control Type
Control
Name Properties Purpose

Frame Frame1 Caption = Magic Squares
Demo

Groups controls

Label Label1 Caption = Magic Square
Size

Labels the magic square edit
box.

13-4

Magic Square Example

Control Type
Control
Name Properties Purpose

TextBox edtSize Accepts input of magic square
size.

CommandButton btnCreate Caption = Create When pressed, creates a new
magic square with current size.

ListView lstMagic GridLines = True

LabelEdit = lvwManual

View = lvwReport

Displays the magic square.

When the form and controls are complete, add the following code to the form.
This code references the control and variable names listed above. If you have
given different names for any of the controls or any variable, change this code
to reflect those differences.

Private Size As Double 'Holds current matrix size

Private theMagic As magicdemo.magicdemoclass 'magic object instance

Private Sub Form_Load()

'This function is called when the form is loaded.

'Creates a new magic class instance.

On Error GoTo Handle_Error

Set theMagic = New magicdemo.magicdemoclass

Size = 0

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCreate_Click()

'This function is called when the Create button is pressed.

'Calls the mymagic method, and displays the magic square.

Dim y As Variant

If Size <= 0 Or theMagic Is Nothing Then Exit Sub

On Error GoTo Handle_Error

Call theMagic.mymagic(1, y, Size)

Call ShowMatrix(y)

13-5

13 Using COM Components in Microsoft® Visual Basic® Applications

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub edtSize_Change()

'This function is called when ever the contents of the

'Text box change. Sets the current value of Size.

On Error Resume Next

Size = CDbl(edtSize.Text)

If Err <> 0 Then

Size = 0

End If

End Sub

Private Sub ShowMatrix(y As Variant)

'This function populates the ListView with the contents of

'y. y is assumed to contain a 2D array.

Dim n As Long

Dim i As Long

Dim j As Long

Dim nLen As Long

Dim Item As ListItem

On Error GoTo Handle_Error

'Get array size

If IsArray(y) Then

n = UBound(y, 1)

Else

n = 1

End If

'Set up Column headers

nLen = lstMagic.Width / 5

Call lstMagic.ListItems.Clear

Call lstMagic.ColumnHeaders.Clear

Call lstMagic.ColumnHeaders.Add(, , "", nLen, lvwColumnLeft)

For i = 1 To n

Call lstMagic.ColumnHeaders.Add(, , _

"Column " & Format(i), nLen, lvwColumnLeft)

Next

13-6

Magic Square Example

'Add array contents

If IsArray(y) Then

For i = 1 To n

Set Item = lstMagic.ListItems.Add(, , "Row " & Format(i))

For j = 1 To n

Call Item.ListSubItems.Add(, , Format(y(i, j)))

Next

Next

Else

Set Item = lstMagic.ListItems.Add(, , "Row 1")

Call Item.ListSubItems.Add(, , Format(y))

End If

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Creating the Executable in Microsoft Visual Basic
After the code is complete, create the standalone executable magic.exe:

1 Reopen the project by selecting File > Save Project from the main menu.
Accept the default name for the main form and enter magic.vbp for the
project name.

2 Return to the File menu. Select File > Make magic.exe to create the
finished product.

Testing the Application
You can run the magic.exe executable as you would any other program.
When the main dialog box opens, enter a positive number in the input box
and click Create. A magic square of the input size appears as shown:

13-7

13 Using COM Components in Microsoft® Visual Basic® Applications

The ListView control automatically implements scrolling if the magic square
is larger than 4-by-4.

Packaging the Component
As a final step, package the magicdemo component and all supporting libraries
into a self-extracting executable. Then anyone can install the package on
another computer, in particular a computer without MATLAB installed, and
use the magicdemo application.

To package the component:

1 Return to the Deployment Tool window and open the magicdemo project. If
necessary, type deploytool in the Command Window.

2 Click the button in the toolbar.

The Deployment Tool creates the magicdemo_pkg.exe self-extracting
executable.

To install the component onto another computer, copy the magicdemo_pkg.exe
package to that machine, run magicdemo_pkg.exe from a command prompt,
and follow the instructions.

13-8

Creating an Excel® Add-In: Spectral Analysis Example

Creating an Excel Add-In: Spectral Analysis Example

In this section...

“Example Overview” on page 13-9

“Building the Component” on page 13-9

“Integrating the Component with VBA” on page 13-11

“Creating the Microsoft® Visual Basic Form” on page 13-13

“Adding the Spectral Analysis Menu Item to Microsoft® Excel” on page 13-18

“Saving the Add-In” on page 13-19

“Testing the Add-in” on page 13-20

“Packaging and Distributing the Add-In” on page 13-22

Example Overview
This example shows how to create a comprehensive Microsoft Excel add-in to
perform spectral analysis. It requires knowledge of Microsoft Visual Basic
forms and controls, as well as Excel workbook events. See the Visual Basic
documentation included with Excel for a complete discussion of these topics.

The example creates an Excel add-in that performs a fast Fourier transform
(FFT) on an input data set located in a designated worksheet range. The
function returns the FFT results, an array of frequency points, and the power
spectral density of the input data. It places these results into ranges you
indicate in the current worksheet. You can also optionally plot the power
spectral density.

You develop the function so that you can invoke it from the Excel Tools menu
and can select input and output ranges through a graphical user interface
(GUI).

Building the Component
Your component will have one class with the following two methods:

13-9

13 Using COM Components in Microsoft® Visual Basic® Applications

• The computefft method computes the FFT and power spectral density of
the input data and computes a vector of frequency points based on the
length of the data entered and the sampling interval.

• The plotfft method performs the same operations as computefft, but
also plots the input data and the power spectral density in a MATLAB
figure window.

The MATLAB code for these two methods resides in two M-files,
computefft.m and plotfft.m, as shown:

computefft.m:
function [fftdata, freq, powerspect] = computefft(data, interval)

if (isempty(data))
fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)

return;
end
t = 0:interval:(len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on
title('Time domain signal')
subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))

13-10

Creating an Excel® Add-In: Spectral Analysis Example

xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

To build the component:

1 If you have not already done so, execute the following command in the
MATLAB product:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

2 Start deploytool.

3 Create a new project with these settings:

• Project name: Fourier

• Class name: Fourier

4 Add the computefft.m and plotfft.m M-files to the project.

5 Save the project.

6 Click the button in the toolbar to create the component.

Integrating the Component with VBA
The next task is to implement the necessary VBA code to integrate the
component into Excel.

To open Excel and select the libraries you need to develop the add-in:

1 Start Excel.

2 From the Excel main menu, select Tools > Macro > Visual Basic Editor
to open the Visual Basic Editor.

3 Select Tools > References to open the Project References dialog box.

4 Select Fourier 1.0 Type Library andMWComUtil 7.5 Type Library.

13-11

13 Using COM Components in Microsoft® Visual Basic® Applications

Creating the Main VBA Code Module
The add-in requires some initialization code and some global variables to
hold the application’s state between function invocations. To achieve this,
implement a Visual Basic code module to manage these tasks, as follows:

1 Right-clickVBAProject in the Project window and select Insert > Module.

A new module appears under Modules in the VBA Project.

2 In the module’s property page, set the Name property to FourierMain.

3 Enter the following code in the FourierMain module:

' FourierMain - Main module stores global state of controls
' and provides initialization code
'
'Global instance of Fourier object
Public theFourier As Fourier.Fourier
'Global instance of MWComplex to accept FFT
Public theFFTData As MWComplex
'Input data range
Public InputData As Range
'Sampling interval
Public Interval As Double
'Output frequency data range
Public Frequency As Range
'Output power spectral density range
Public PowerSpect As Range
'Holds the state of plot flag
Public bPlot As Boolean
'Global instance of MWUtil object
Public theUtil as MWUtil
'Module-is-initialized flag
Public bInitialized As Boolean
Private Sub LoadFourier()
'Initializes globals and Loads the Spectral Analysis form

Dim MainForm As frmFourier
On Error GoTo Handle_Error
Call InitApp
Set MainForm = New frmFourier

13-12

Creating an Excel® Add-In: Spectral Analysis Example

Call MainForm.Show
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Private Sub InitApp()
'Initializes classes and libraries. Executes once
'for a given session of Excel

If bInitialized Then Exit Sub
On Error GoTo Handle_Error
If theFourier Is Nothing Then

Set theFourier = New Fourier.Fourier
End If
If theFFTData Is Nothing Then

Set theFFTData = New MWComplex
End If
bInitialized = True
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Creating the Microsoft Visual Basic Form
The next task is to develop a user interface for your add-in using the Microsoft
Visual Basic editor. Follow these steps to create a new user form and populate
it with the necessary controls:

1 Right-click VBAProject in the Project window and select
Insert > UserForm.

A new form appears under Forms in the VBA Project.

2 In the form’s property page, set the Name property to frmFourier and the
Caption property to Spectral Analysis.

3 Add a series of controls to the blank form to complete the dialog box, as
summarized in the following table:

13-13

13 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

Frame Frame1 Caption = Input
Data

Groups all input controls.

Label Label1 Caption = Input
Data:

Labels RefEdit for input
data.

RefEdit refedtInput Selects range for input
data.

Label Label2 Caption =
Sampling
Interval

Labels text box for
sampling interval.

TextBox edtSample Specifies the sampling
interval.

CheckBox chkPlot Caption = Plot
time domain
Signal and
Power Spectral
Density

Plots input data and
power spectral density.

Frame Frame2 Caption = Output
Data

Groups all output
controls.

Label Label3 Caption =
Frequency:

Labels RefEdit for
frequency output.

RefEdit refedtFreq Selects output range for
frequency points.

Label Label4 Caption = FFT -
Real Part:

Labels RefEdit for real
part of FFT.

RefEdit refedtReal Selects output range for
real part of FFT of input
data.

Label Label5 Caption = FFT -
Imaginary Part:

Labels RefEdit for
imaginary part of FFT.

RefEdit refedtImag Selects output range for
imaginary part of FFT of
input data.

13-14

Creating an Excel® Add-In: Spectral Analysis Example

Control Type Control Name Properties Purpose

Label Label6 Caption =
Power Spectral
Density

Labels RefEdit for power
spectral density.

RefEdit refedtPowSpect Selects the output range
for power spectral density
of input data.

CommandButton btnOK Caption = OK

Default = True

Executes the function and
closes the dialog box.

CommandButton btnCancel Caption = Cancel

Cancel = True

Closes the dialog box
without executing the
function.

The following figure shows the resulting layout.

4 When the form and controls are complete, right-click anywhere in the form
and View Code. The following code listing shows the code to implement.
Note that this code references the control and variable names listed in

13-15

13 Using COM Components in Microsoft® Visual Basic® Applications

the previous table. If you have renamed any of the controls or any global
variable, change this code to reflect those differences.

'

'frmFourier Event handlers

'

Private Sub UserForm_Activate()

'UserForm Activate event handler. This function gets called before

'showing the form, and initializes all controls with values stored

'in global variables.

On Error GoTo Handle_Error

If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub

'Initialize controls with current state

If Not InputData Is Nothing Then

refedtInput.Text = InputData.Address

End If

edtSample.Text = Format(Interval)

If Not Frequency Is Nothing Then

refedtFreq.Text = Frequency.Address

End If

If Not IsEmpty (theFFTData.Real) Then

If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then

refedtReal.Text = theFFTData.Real.Address

End If

End If

If Not IsEmpty (theFFTData.Imag) Then

If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then

refedtImag.Text = theFFTData.Imag.Address

End If

End If

If Not PowerSpect Is Nothing Then

refedtPowSpect.Text = PowerSpect.Address

End If

chkPlot.Value = bPlot

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCancel_Click()

13-16

Creating an Excel® Add-In: Spectral Analysis Example

'Cancel button click event handler. Exits form without computing fft

'or updating variables.

Unload Me

End Sub

Private Sub btnOK_Click()

'OK button click event handler. Updates state of all variables from controls

'and executes the computefft or plotfft method.

Dim R As Range

If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form

On Error Resume Next

'Process inputs

Set R = Range(refedtInput.Text)

If Err <> 0 Then

MsgBox ("Invalid range entered for Input Data")

Exit Sub

End If

Set InputData = R

Interval = CDbl(edtSample.Text)

If Err <> 0 Or Interval <= 0 Then

MsgBox ("Sampling interval must be greater than zero")

Exit Sub

End If

'Process Outputs

Set R = Range(refedtFreq.Text)

If Err = 0 Then

Set Frequency = R

End If

Set R = Range(refedtReal.Text)

If Err = 0 Then

theFFTData.Real = R

End If

Set R = Range(refedtImag.Text)

If Err = 0 Then

theFFTData.Imag = R

End If

Set R = Range(refedtPowSpect.Text)

If Err = 0 Then

Set PowerSpect = R

End If

13-17

13 Using COM Components in Microsoft® Visual Basic® Applications

bPlot = chkPlot.Value

'Compute the fft and optionally plot power spectral density

If bPlot Then

Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)

Else

Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)

End If

GoTo Exit_Form

Handle_Error:

MsgBox (Err.Description)

Exit_Form:

Unload Me

End Sub

Adding the Spectral Analysis Menu Item to Microsoft
Excel
The last task in the integration process is to add a menu item to Microsoft
Excel so that you can invoke the tool from the Excel Tools menu. To
do this you add event handlers for the workbook’s AddinInstall and
AddinUninstall events; these are events that install and uninstall menu
items. The menu item calls the LoadFourier function in the FourierMain
module.

To implement the menu item:

1 Right-click ThisWorkbook in the Visual Basic project window and select
View Code.

2 Add the following code to the ThisWorkbook object:

Private Sub Workbook_AddinInstall()

'Called when Addin is installed

Call AddFourierMenuItem

End Sub

Private Sub Workbook_AddinUninstall()

'Called when Addin is uninstalled

Call RemoveFourierMenuItem

13-18

Creating an Excel® Add-In: Spectral Analysis Example

End Sub

Private Sub AddFourierMenuItem()

Dim ToolsMenu As CommandBarPopup

Dim NewMenuItem As CommandBarButton

'Remove if already exists

Call RemoveFourierMenuItem

'Find Tools menu

Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)

If ToolsMenu Is Nothing Then Exit Sub

'Add Spectral Analysis menu item

Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)

NewMenuItem.Caption = "Spectral Analysis..."

NewMenuItem.OnAction = "LoadFourier"

End Sub

Private Sub RemoveFourierMenuItem()

Dim CmdBar As CommandBar

Dim Ctrl As CommandBarControl

On Error Resume Next

'Find tools menu and remove Spectral Analysis menu item

Set CmdBar = Application.CommandBars(1)

Set Ctrl = CmdBar.FindControl(ID:=30007)

Call Ctrl.Controls("Spectral Analysis...").Delete

End Sub

Saving the Add-In
Name the add-in Spectral Analysis and follow these steps to save it:

1 From the Excel main menu, select File > Properties.

The Workbook Properties dialog box opens.

2 Click the Summary tab and enter Spectral Analysis as the workbook
title.

3 Click OK to save the edits.

4 Select File > Save As from the Excel main menu.

13-19

13 Using COM Components in Microsoft® Visual Basic® Applications

5 Select Microsoft Excel Add-In (*.xla) as the file type.

6 Enter Fourier.xla as the file name.

7 Click Save to save the add-in.

Testing the Add-in
Before distributing the add-in, test it with a sample problem. Spectral
analysis is commonly used to find the frequency components of a signal
buried in a noisy time domain signal. In this example you will create a data
representation of a signal containing two distinct components and add to it a
random component. This data along with the output will be stored in columns
of an Excel worksheet, and you will plot the time-domain signal along with
the power spectral density.

To create the test problem:

1 Start a new Excel session with a blank workbook.

2 Select Tools > Add-Ins from the main menu.

3 When the Add-Ins dialog box opens, click Browse.

4 Browse to the Fourier.xla file and click OK. The Spectral Analysis
add-in appears in the available Add-Ins list and is selected.

5 Click OK to load the add-in.

This add-in installs a menu item under the Excel Tools menu. You can
display the Spectral Analysis GUI by selecting Tools > Spectral Analysis.

Before invoking the add-in, create some data, in this case a signal with
components at 15 and 40 Hz. Sample the signal for 10 seconds at a sampling
rate of 0.01 second. Put the time points into column A and the signal points
into column B.

Creating the Data

1 Enter 0 for cell A1 in the current worksheet.

13-20

Creating an Excel® Add-In: Spectral Analysis Example

2 Click cell A2 and type the formula = A1 + 0.01.

3 Drag the formula in cell A2 down the column to cell A1001.

This procedure fills the range A1:A1001 with the interval 0 to 10
incremented by 0.01.

4 Click cell B1 and type the formula SIN(2*PI()*15*A1) +
SIN(2*PI()*40*A1) + RAND().

5 Repeat the drag procedure to copy this formula to all cells in the range
B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

1 Select Tools > Spectral Analysis from the main menu.

2 Click Input Data.

3 Click the B1:B1001 range from the worksheet, or type this address into
Input Data.

4 Click the Sampling Interval box and type 0.01.

5 Click Plot time domain signal and power spectral density.

6 Enter C1:C1001 for frequency output. Similarly, enter D1:D1001, E1:E1001,
and F1:F1001 for the FFT real and imaginary parts, and spectral density.

7 Click OK to run the analysis.

The following figure shows the output.

13-21

13 Using COM Components in Microsoft® Visual Basic® Applications

The power spectral density reveals the two signals at 15 and 40 Hz.

Packaging and Distributing the Add-In
As a final step, package the add-in, the COM component, and all supporting
libraries into a self-extracting executable. This package can be installed onto
other computers that need to use the Spectral Analysis add-in.

To package and distribute the add-in:

13-22

Creating an Excel® Add-In: Spectral Analysis Example

1 Return to the Deployment Tool and open the Fourier project. (If necessary
run the deploytool command in the MATLAB product to reopen the
Deployment Tool.)

2 Click the button in the toolbar.

The builder creates the Fourier_pkg.exe self-extracting executable.

3 To install this add-in onto another computer, copy the Fourier_pkg.exe
package to that machine, run it from a command prompt, and follow the
instructions.

13-23

13 Using COM Components in Microsoft® Visual Basic® Applications

Univariate Interpolation Example

In this section...

“Example Overview” on page 13-24

“Using the Deployment Tool to Create and Build the Component” on page
13-24

“Using the Component in Microsoft® Visual Basic” on page 13-25

“Creating the Microsoft® Visual Basic Form” on page 13-26

Example Overview
This example is created using the Akima’s Univariate Interpolation example
posted by N. Shyamsundar on the MathWorks Web site. You can download
the original M-file from http://www.mathworks.com/matlabcentral/.
Search for COM Builder Example: Univariate Interpolation.

This example shows you how to create the COM component using the
MATLAB Builder NE product and how to use this COM component in
external Microsoft Visual Basic code independent of the MATLAB product.

Using the Deployment Tool to Create and Build the
Component

1 At the MATLAB command prompt, change folders to your work folder.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

3 Open the Deployment Tool window.

deploytool

13-24

http://www.mathworks.com/matlabcentral/

Univariate Interpolation Example

4 Create a project with the following settings:

Setting Value

Project name UnivariateInterp

Class name Interp

Project folder The name of your work folder followed by the Project
name.

Generate Verbose
Output

Selected

5 Locate your work folder and navigate to the UnivariateInterp folder,
and add the M-file to the project.

6 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool. The files that are needed for the component
are copied to two newly created folders, src and distrib, in the
UnivariateInterp folder. A copy of the build log is placed in the src folder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM.

To create a Microsoft Visual Basic project and add references to the necessary
libraries:

1 Start Visual Basic.

2 Create a new Standard EXE project.

3 Select Project > References.

4 Ensure that the following libraries appear:

UnivariateInterp 1.0 Type Library

MWComUtil 7.5 Type Library

13-25

13 Using COM Components in Microsoft® Visual Basic® Applications

Tip If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 14-4
for information on this process.

Creating the Microsoft Visual Basic Form
The next step creates a front end or a Microsoft Visual Basic form for the
application. Your application receives data from the user through this form.

To create a new user form and populate it with the necessary controls.

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Ensure thatMicrosoft Windows Common Controls 6.0 is selected.

You will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface using the
properties shown in the following table.

Control Type Control Name Properties Purpose

Form frmInterp Caption = Univariate
Interpolation

Container for all
components

Label lblDataCount Caption = Number of Data
Points

Labels the text box
txtNumDataPts

TextBox txtNumDataPts Text = Number of original data
points

Label lblInterp Caption = Number of
Interpolation Points

Labels the text box
txtInterp

TextBox txtInterp Text = Number of points over
which to interpolate

Label lblPlot Caption = Would you like to
plot the data?

Labels the check box
chkPlot

13-26

Univariate Interpolation Example

Control Type Control Name Properties Purpose

CheckBox chkPlot When selected, a
message is sent to the
COM component to plot
the data.

ListView lstXData Name = lstXData

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

X-data values. Set the
view type to lvwReport
to allow the user to add
data to the list view.

ListView lstYData Name = lstYData

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

Y-data values. Set the
view type to lvwReport
to allow the user to add
data to the list view.

ListView lstInterp Name = lstInterp

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

Interpolation points

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes the function

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes the dialog box
without executing
function

4 When the design is complete, save the project by selecting File > Save.

5 When prompted for the project name, type Interp.vbp, and for the form,
type frmInterp.frm.

6 To write the underlying code, right-click frmInterp in the Project window
and select View Code.

13-27

13 Using COM Components in Microsoft® Visual Basic® Applications

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theInterp As UnivariateInterp.Interp 'Variable to hold the COM object

Private Sub cmdCancel_Click()

' Unload the form if the user hits the cancel button.

Unload Me

End Sub

Private Sub Form_Initialize()

On Error GoTo Handle_Error

' Create the COM object

' If there is an error, handle it accordingly.

Set theInterp = New UnivariateInterp.Interp

' Set the flags such that the input is always passed as double data.

theInterp.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble

Exit Sub

Handle_Error:

' Error handling code

MsgBox ("Error " & Err.Description)

End Sub

Private Sub Form_Load()

' Set the run time properties of the components

Dim Len1 As Long ' Variable to hold length parameter of the list box

Dim Len2 As Long ' Variable to hold the length parameter of the list box

Len2 = lstInterp.Width / 2

Len1 = (lstInterp.Width - Len2) - 150

' Add the column headers to the list boxes

Call lstXData.ColumnHeaders.Add(, , "XData", Len2)

Call lstYData.ColumnHeaders.Add(, , "YData", Len2)

Call lstInterp.ColumnHeaders.Add(, , "Interp Data", Len1)

Call lstInterp.ColumnHeaders.Add(, , "Interp YData", Len2)

' Enable the grid lines

lstXData.GridLines = True

lstYData.GridLines = True

13-28

Univariate Interpolation Example

lstInterp.GridLines = True

lstInterp.FullRowSelect = True

' Set the Tab indices for each of the components

txtNumDataPts.TabIndex = 1

txtInterp.TabIndex = 2

lstXData.TabIndex = 3

lstYData.TabIndex = 4

lstInterp.TabIndex = 5

cmdEvaluate.TabIndex = 6

cmdCancel.TabIndex = 7

End Sub

Private Sub txtInterp_Change()

' If user changes number of interpolation points, set the interpolation

' point listbox to accomodate the new number of points.

Dim loopCount As Integer ' loop count

Dim numData As Integer

On Error GoTo Handle_Error

' First clear the listbox

Call lstInterp.ListItems.Clear

' Create space for the requested number of interpolation points

If Not (txtInterp.Text = "") Then

numData = CDbl(txtInterp.Text)

For loopCount = 1 To numData

Call lstInterp.ListItems.Add(loopCount, , "")

Next

End If

Exit Sub

Handle_Error:

' Reset the list to 0 elements and also the text box to an empty string.

MsgBox ("Invalid value for number of Data points")

lstInterp.ListItems.Clear

txtInterp.Text = ""

End Sub

Private Sub txtNumDataPts_Change()

' If the user changes the number of data points, set the XData and YData

' listboxes to accomodate the new number of points.

Dim loopCount As Integer ' loop count

13-29

13 Using COM Components in Microsoft® Visual Basic® Applications

Dim numData As Integer

On Error GoTo Handle_Error

' First clear both the listbox (XData and YData)

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

' Create space for the requested number of data points (XData and YData).

If Not (txtNumDataPts.Text = "") Then

numData = CDbl(txtNumDataPts.Text)

For loopCount = 1 To numData

Call lstXData.ListItems.Add(loopCount, , "")

Call lstYData.ListItems.Add(loopCount, , "")

Next

End If

Exit Sub

Handle_Error:

' Reset the list to 0 elements and also the text box to an empty string.

MsgBox ("Error: " & Err.des)

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

txtNumDataPts.Text = ""

End Sub

Private Sub cmdEvaluate_Click()

' Dim R As Range

Dim XDataInterp As Variant ' Result variable object

Dim loopCount As Integer ' A variable used for loop count

Dim item As ListItem ' Temporary variable to store data in list box

Dim XData() As Double ' X value of data points, passed to COM object

Dim YData() As Double ' Y value of data points, passed to the COM object

Dim XInterp() As Double ' X value of interpolation points, passed to COM

' object

Dim Yi As Variant ' Y value of interpolation points, obtained from COM

' object as ouput value

' Set dimensions of the input and ouput data based on user inputs (number

' of data points and number of interpolation points).

ReDim XData(1 To lstXData.ListItems.Count)

ReDim YData(1 To lstYData.ListItems.Count)

ReDim XInterp(1 To lstInterp.ListItems.Count)

ReDim Yi(1 To lstInterp.ListItems.Count)

13-30

Univariate Interpolation Example

' Collect the Data and set the XData, YData, XInterp matrices accordingly

For loopCount = 1 To lstXData.ListItems.Count

XData(loopCount) = CDbl(lstXData.ListItems.item(loopCount))

YData(loopCount) = CDbl(lstYData.ListItems.item(loopCount))

Next

For loopCount = 1 To lstInterp.ListItems.Count

XInterp(loopCount) = CDbl(lstInterp.ListItems.item(loopCount))

Yi(loopCount) = -1

Next

' Check if the object was created properly.

' If not, go to the error handling routine.

If theInterp Is Nothing Then GoTo Exit_Form

' If there is an error, continue with the code.

On Error GoTo Handle_Error

'Compute Curve Fitting Data

Call theInterp.UnivariateInterpolation(1,Yi,XData,YData,XInterp,_

chkPlot.Value)

'Call lstInterp.ListItems.Clear

For loopCount = LBound(Yi, 2) To UBound(Yi, 2)

Set item = lstInterp.ListItems(loopCount)

Call item.ListSubItems.Add(, , Format(Yi(1, loopCount), "##.###"))

Next

Call lstInterp.Refresh

GoTo Exit_Form

Handle_Error:

' Error handling routine

MsgBox ("Error: " & Err.Description)

Exit_Form:

End Sub

13-31

13 Using COM Components in Microsoft® Visual Basic® Applications

Matrix Calculator Example

In this section...

“Example Overview” on page 13-32

“Building the Component” on page 13-32

“Using the Component in Microsoft® Visual Basic” on page 13-33

“Creating the Microsoft® Visual Basic Form” on page 13-34

Example Overview
This example shows how to encapsulate MATLAB utilities that perform
basic matrix arithmetic. It includes M-code that performs matrix addition,
subtraction, multiplication, division and left division and a function to
evaluate the eigenvalues for a matrix. The example shows how to create the
COM component using the MATLAB Builder NE product and how to use
the COM component in a Microsoft Visual Basic application independent of
the MATLAB product.

Note This example assumes that you have downloaded the M-code from
http://www.mathworks.com/matlabcentral/ to your work folder. To get the
download, search the File Exchange at matlabcentral for MatrixArith.

Building the Component

1 At the MATLAB command prompt, change folders to the MatrixMath
folder in your work folder.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

3 Enter the command deploytool to open the Deployment Tool window.

13-32

http://www.mathworks.com/matlabcentral/

Matrix Calculator Example

4 Create a project with the following settings:

Setting Value

Project name matrixMath

Class name matrixMathclass

Project folder The name of your work folder followed by the project
name

Generate Verbose
Output

Selected

5 Locate your work folder and navigate to the matrixMath folder, which
contains the M-files needed for the component.

6 Add the following files to the project:

• addMatrices.m

• divideMatrices.m

• eigenValue.m

• leftDivideMatrices.m

• multiplyMatrices.m

• subtractMatrices.m

7 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output pane
of the Deployment Tool. The files that are needed for the component are
copied to two newly created folders, src and distrib, in the matrixMath
folder. A copy of the build log is placed in the src folder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM. Follow
these steps to create a Microsoft Visual Basic project and add references to
the necessary libraries.

1 Start Visual Basic.

13-33

13 Using COM Components in Microsoft® Visual Basic® Applications

2 Create a new Standard EXE project.

3 Select Project > References.

4 Ensure that the following libraries are in the project:

MatrixMath 1.0 Type Library

MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 14-4
for information on this.

Creating the Microsoft Visual Basic Form
The next step creates a front end or a Microsoft Visual Basic form for the
application. End users enter data in this form.

To create a new user form and populate it with the necessary controls:

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Make sure that Microsoft Windows Common Controls 6.0 is selected.
You will use the Spreadsheet control from this component library.

3 Add a series of controls to the blank form to create an interface as shown in
the next figure.

13-34

Matrix Calculator Example

4 One of the main components used in the Visual Basic form is a Spreadsheet
component. For each Spreadsheet component, set properties as follows.

Property Original Value New Value

DisplayColumnHeaders True False

DisplayHorizontalScrollBar True False

DisplayRowHeaders True False

DisplayTitleBar True False

DisplayToolBar True False

DisplayVerticalScrollBar True False

MaximumWidth 80% 100%

ViewableRange 1:65536 A1:E5

13-35

13 Using COM Components in Microsoft® Visual Basic® Applications

A consolidated list of components added to the form and the properties
modified is as follows.

Control Type Control Name Properties Purpose

Form frmMatrixMath Caption = Matrix
Laboratory

Container for all
components

Frame frmInput Caption = Input Data
Points

Groups all input controls

Frame frmOutput Caption = Output
Coefficients

Groups all output
controls

Spreadsheet sheetMat1 Refer to previous table. Accepts input matrix 1
from user

Spreadsheet sheetMat2 Refer to previous table. Accepts input matrix 2
from user

Spreadsheet sheetMat3 Refer to previous table. Accepts input matrix 3
from user

Spreadsheet sheetResultMat Refer to previous table. Displays result matrix

Label lblAdd Caption = Add Labels Add option
button

OptionButton optOperation Index = 0 Option button to perform
addition

Label lblSub Caption = Subtract Labels Subtract option
button

OptionButton optOperation Index = 1 Option button to perform
subtraction

Label lblMult Caption = Multiply Labels Multiply option
button

OptionButton optOperation Index = 2 Option button to perform
multiplication

Label lblDivide Caption = Divide Labels Divide option
button

OptionButton optOperation Index = 3 Option button to perform
division

13-36

Matrix Calculator Example

Control Type Control Name Properties Purpose

Label lblLeftDivide Caption = Left Divide Labels Left Divide
option button

OptionButton optOperation Index = 4 Option button to perform
left division

Label lblEig Caption = Eigenvalue Labels Eigenvalue
option button

OptionButton optOperation Index = 5 Option button to
calculate Eigenvalue
of first matrix

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes function

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes dialog box without
executing function

5 When the design is complete, save the project by selecting File > Save.
When prompted for the project name, type MatrixMathVB.vbp, and for
the form, type frmMatrixMath.frm.

6 To write the underlying code, right-click frmMatrixMath in the Project
window, and select View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theMatCal As matrixMath.matrixMath

Private Sub Form_Initialize()

' Create an instance of the COM object and set the MWArray flags.

' If this fails, exit from the form.

On Error GoTo exit_form

' Create the object.

Set theMatCal = New matrixMath.matrixMath

13-37

13 Using COM Components in Microsoft® Visual Basic® Applications

' Force the input to be of type double.

theMatCal.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble

' Set the AutoResizeOutput flag to True, so that you do not have to specify

' the size of the output variable as returned by the COM object.

theMatCal.MWFlags.ArrayFormatFlags.AutoResizeOutput = True

' Get the results in a Matrix format.

theMatCal.MWFlags.ArrayFormatFlags.OutputArrayFormat =_

mwArrayFormatMatrix

Exit Sub

exit_form:

' Error handling routine. Since no object is created, display error '

'message and unload the form.

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

Private Sub Form_Load()

' Set the run time properties for all the components.

frmInputs.TabIndex = 1

sheetMat1.AutoFit = True

' Set the tab order for each component and the viewable range.

' If you need a larger viewable range, you might want to turn the

' horizontal and vertical scroll bars to TRUE.

sheetMat1.TabStop = True

sheetMat1.TabIndex = 1

sheetMat1.Width = 4875

sheetMat1.ViewableRange = "A1:E5"

sheetMat2.TabStop = True

sheetMat2.TabIndex = 2

sheetMat2.Width = 4875

sheetMat2.ViewableRange = "A1:E5"

sheetMat3.TabStop = True

sheetMat3.TabIndex = 3

sheetMat3.Width = 4875

sheetMat3.ViewableRange = "A1:E5"

sheetResultMatTabStop = False

13-38

Matrix Calculator Example

sheetResultMatTabIndex = 1

sheetResultMatWidth = 4875

sheetResultMat.ViewableRange = "A1:E5"

frmOutput.TabIndex = 2

optOperation(0).TabIndex = 3

optOperation(1).TabIndex = 4

optOperation(2).TabIndex = 5

optOperation(3).TabIndex = 6

optOperation(4).TabIndex = 7

optOperation(5).TabIndex = 8

End Sub

Private Sub cmdCancel_Click()

' When the user clicks on the Cancel button, unload the form.

Unload Me

End Sub

Private Sub cmdEval_Click()

' Declare the variables to be used in the code

Dim data1 As Range

' This is the temporary variable that holds the value entered in

' the spreadsheet.

'Dim finalRows As Double ' The number of

'Dim finalCols As Double

' Dim tempVal As Double

Dim matArray1 As Variant ' Variable to hold the value of input Matrix 1,

' passed to the COM object directly.

Dim matArray2 As Variant ' Variable to hold the value of input Matrix 1,

' passed via varArg variable.

Dim matArray3 As Variant ' Variable to hold the value of input Matrix 1,

' passed via varArg variable.

Dim varArg(2) As Variant ' Variable to hold the value of input Matrix 1,,

' contains the two optional matrices and is passed to the COM object.

'Dim mat1() As Double

'Dim mat1Dimension2() As Variant

13-39

13 Using COM Components in Microsoft® Visual Basic® Applications

Dim tempRange As Range ' Take the range value as obtained from the

' user input into a temporary range.

Dim resultMat As Variant ' Variable to take the result matrix in

Dim msg As String ' The message thrown by the COM object is taken

' in this variable.

Call sheetResultMat.ActiveSheet.UsedRange.Clear

' Check if the COM object was created properly.

' If not exit

If theMatCal Is Nothing Then GoTo exit_form

' Get the used range of data from the sheetMat1, which will then be

' converted into matArray1.

Set data1 = sheetMat1.ActiveSheet.UsedRange

'finalRows = data1.Rows.Count

'finalCols = data1.Columns.Count

'ReDim mat1(1 To data1.Rows.Count)

'ReDim mat1Dimension2(1 To data1.Columns.Count)

ReDim matArray1(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

For ColCount = 1 To data1.Columns.Count

' Extract the values and populate input matrix 1.

Set tempRange = data1.Cells(RowCount, ColCount)

'tempVal = tempRange.Value

'matArray1(RowCount, ColCount) = tempVal

matArray1(RowCount, ColCount) = tempRange.Value

'Set mat1(ColCount) = tempRange.Value

Next ColCount

' mat1Dimension2(RowCount) = mat1()

Next RowCount

Set data1 = sheetMat2.ActiveSheet.UsedRange

If (Not (data1.Value = "")) Then

ReDim matArray2(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

13-40

Matrix Calculator Example

For ColCount = 1 To data1.Columns.Count

Set tempRange = data1.Cells(RowCount, ColCount)

tempVal = tempRange.Value

matArray2(RowCount, ColCount) = tempVal

Next ColCount

Next RowCount

finalCols = data1.Columns.Count

varArg(0) = matArray2

End If

Set data1 = sheetMat3.ActiveSheet.UsedRange

If (Not (data1.Value = "")) Then

ReDim matArray3(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

For ColCount = 1 To data1.Columns.Count

Set tempRange = data1.Cells(RowCount, ColCount)

tempVal = tempRange.Value

matArray3(RowCount, ColCount) = tempVal

Next ColCount

Next RowCount

finalCols = data1.Columns.Count

varArg(1) = matArray3

End If

' Based on the operation selected by the user, call the appropriate method

' from the COM object.

If optOperation.Item(0).Value = True Then ' Add

Call theMatCal.addMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(1).Value = True Then ' Subtract

Call theMatCal.subtractMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(2).Value = True Then ' Multiply

Call theMatCal.multiplyMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(3).Value = True Then ' Divide

Call theMatCal.divideMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(4).Value = True Then ' Left Divide

Call theMatCal.leftDivideMatrices(2, resultMat, msg, matArray1,_

varArg)

ElseIf optOperation.Item(5).Value = True Then ' Eigen Value

Call theMatCal.eigenValue(2, resultMat, msg, matArray1)

13-41

13 Using COM Components in Microsoft® Visual Basic® Applications

End If

' If the result matrix is a scalar double, display it in the first cell.

If (VarType(resultMat) = vbDouble) Then

Set tempRange = sheetResultMat.Cells(1, 1)

tempRange.Value = resultMat

' If the result matrix is not a scalar double, loop through it to display

' all the elements.

Else

For RowCount = 1 To UBound(resultMat, 1)

For ColCount = 1 To UBound(resultMat, 2)

Set tempRange = sheetResultMat.Cells(RowCount, ColCount)

tempRange.Value = resultMat(RowCount, ColCount)

Next ColCount

Next RowCount

End If

Exit Sub

exit_form:

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

' If the user changes the operation, clear the result matrix.

Private Sub optOperation_Click(Index As Integer)

Call sheetResultMat.ActiveSheet.Cells.Clear

End Sub

13-42

Curve Fitting Example

Curve Fitting Example

In this section...

“Example Overview” on page 13-43

“Building the Component” on page 13-43

“Building the Project” on page 13-44

“Using the Component in Microsoft® Visual Basic” on page 13-44

“Creating the Microsoft® Visual Basic Form” on page 13-45

Example Overview
This example demonstrates the optimal fitting of a nonlinear function to a
set of data, using the curve-fitting demo fitfun provided with the MATLAB
product. It uses fminsearch, an implementation of the Nelder-Mead simplex
(direct search) algorithm, to minimize a nonlinear function of several
variables.

This example shows you how to create the COM component using the
MATLAB Builder NE product and how to use this COM component in a
Microsoft Visual Basic application independent of MATLAB.

Note This example assumes that you have downloaded the M-code from
http://www.mathworks.com/matlabcentral/ to the matlabroot folder.
To get the download, search the File Exchange at matlabcentral for COM
Builder Demo: Curve Fitting.

Building the Component

1 At the MATLAB command prompt, change folders to matlabroot.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

13-43

http://www.mathworks.com/matlabcentral/

13 Using COM Components in Microsoft® Visual Basic® Applications

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

3 Enter the deploytool command to open the Deployment Tool window.

4 Create a project with the following settings:

Project name CurveFit

Class name CurveFitclass

Building the Project

1 In the Deployment Tool window, add fitfun.m and fitdemo.m from the
folder matlabroot/CurveFitDemo.

2 Click the button in the toolbar.

The component is created and placed in the distrib folder within the
Classfolder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM.

To create a Microsoft Visual Basic project and add references to the necessary
libraries:

1 Start Visual Basic.

2 Create a new Standard EXE project.

3 Select Project > References.

4 Ensure that the following libraries are included in the project:

CurveFit 1.0 Type Library
MWComUtil 7.5 Type Library

13-44

Curve Fitting Example

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 14-4
for information.

Creating the Microsoft Visual Basic Form
The next step is to create a front end or a Microsoft Visual Basic form for the
application. End users enter data on the form.

To create a new user form and populate it with the necessary contros:

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Make sure that Microsoft Windows Common Controls 6.0 is selected.
You will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface.

The following table shows the components and properties that are required.

Control Type Control Name Properties Purpose

Form frmCurveFit Caption = Curve
Fitting

Container for all
components.

Frame frmInput Name = frmInput*

Caption = Input Data
Points

Groups all input
controls.

Frame frmOutput Name = frmOutput*

Caption = Output
Coefficients

Groups all output
controls.

Label lblNumDataPoints Caption = Number of
Data Points

Labels the text
box that takes the
number of data
points the user
wants to enter.

13-45

13 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

TextBox txtNumOfDatPoints Text = Holds number of
data points the
user wants to
enter. Sets size
of list box added
later.

ListView lstXData Name = lstXData

GridLines = TrueLabel

Edit = lvwAutomatic

View = lvwReport

X-data values.
Set the view type
to lvwReport to
enable user to add
data to the list
view.

ListView lxtYData Name = lstYData

GridLines = TrueLabel

Edit = lvwAutomatic

View = lvwReport

Y-data values.

Label lblCoeff1* Caption = Co-efficient
1

Labels text box for
coefficient 1.

Label lblCoeff2 Caption = Co-efficient
2

Labels text box for
coefficient 2.

TextBox txtCoeff1 Text = Displays value of
coefficient 1 as
calculated by the
COM module.

TextBox txtCoeff2 Text = Displays value of
coefficient 2 as
calculated by the
COM module.

Label lblLambda1* Caption = Lambda 1 Labels text box for
lambda 1.

Label lblLambda2 Caption = Lambda 2 Labels text box for
lambda 2.

13-46

Curve Fitting Example

Control Type Control Name Properties Purpose

TextBox txtLambda1 Text = Displays value
of lambda 1 as
calculated by the
COM module.

TextBox txtLambda2 Text = Displays value
of lambda 2 as
calculated by the
COM module.

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes function.

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes dialog box
without executing
the function.

4 When the design is complete, save the project by selecting File > Save.

5 When prompted for the project name, type CurveFitExample.vbp, and for
the form, type frmCurveFit.frm.

6 In the Project window, right-click frmCurveFit and select View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theFit As CurveFit.CurveFit ' Variable to hold the COM Object

' This routine is exectued when the form is initialized.

Private Sub Form_Initialize()

' If the initialize routine fails, handle it accordingly.

On Error GoTo Exit_Form

' Create the COM object

Set theFit = New CurveFit.CurveFit

' Set the flags such that the output is transposed.

13-47

13 Using COM Components in Microsoft® Visual Basic® Applications

theFit.MWFlags.ArrayFormatFlags.TransposeOutput = True

Exit Sub

Exit_Form:

' Display the error message and Unload the form if object

creation failed

MsgBox ("Error: " & Err.Description)

MsgBox ("Error: Could not create the COM object")

Unload Me

End Sub

Private Sub Form_Load()

On Error GoTo Exit_Form

' Set the runtime properties of the components

' Set the headers of the column

Call lstXData.ColumnHeaders.Add(, , "X Data")

Call lstYData.ColumnHeaders.Add(, , "Y Data")

' Make labeledit property automatic so that you edit the label.

lstXData.LabelEdit = lvwAutomatic

lstYData.LabelEdit = lvwAutomatic

' Make the grid lines for the listbox visible.

lstXData.GridLines = True

lstYData.GridLines = True

Exit Sub

Exit_Form:

' Error handling routine. Since cannot load the form,

' display the error message and unload the program.

MsgBox ("Error: Could not load the form")

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

Private Sub cmdCancel_Click()

' If the user hits the cancel button, unload the form.

Unload Me

End Sub

Private Sub txtNumOfDataPoints_Change()

13-48

Curve Fitting Example

' If user changes number of data points, clear XData and YData

' listboxes. Provide enough spaces for given number of points.

Dim loopCount As Integer

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

If (txtNumOfDataPoints.Text = "") Then

Exit Sub

End If

For loopCount = 1 To CInt(txtNumOfDataPoints.Text)

lstXData.ListItems.Add (loopCount)

lstYData.ListItems.Add (loopCount)

Next loopCount

End Sub

Private Sub cmdEvaluate_Click()

Dim loopCount As Integer ' loop counter

Dim numOfData As Integer ' variable to hold the number of data

' points the user has entered

Dim XData() As Double ' Column Vector for XData, will be passed

' as input to the COM method.

Dim YData() As Double ' Column Vector for YData, will be passed

' as input to the COM method.

Dim Coeff As Variant ' Coefficient values will be returned by

' the COM method in this variable.

Dim Lambda As Variant ' Lambda values will be returned by the

' COM method in this variable.

' If there is an error, handle it accordingly.

On Error GoTo Handle_Error

If txtNumOfDataPoints.Text = "" Then

Exit Sub

End If

' Get the number of data points.

numOfData = CInt(txtNumOfDataPoints.Text)

ReDim XData(1 To numOfData) As Double

ReDim YData(1 To numOfData) As Double

' Read the input data into respective double arrays.

For loopCount = 1 To numOfData

XData(loopCount) = lstXData.ListItems.Item(loopCount)

YData(loopCount) = lstYData.ListItems.Item(loopCount)

13-49

13 Using COM Components in Microsoft® Visual Basic® Applications

Next loopCount

' Call the COM method

Call theFit.fitdemo(2, Coeff, Lambda, XData, YData)

' Display values of coefficients returned by the COM method.

txtCoeff1.Text = CStr(Format(Coeff(1, 1), "##.####"))

txtCoeff2.Text = CStr(Format(Coeff(1, 2), "##.####"))

txtLambda1.Text = CStr(Format(Lambda(1, 1), "##.####"))

txtLambda2.Text = CStr(Format(Lambda(1, 2), "##.####"))

Exit Sub

Handle_Error:

' Error handling routine

MsgBox ("Error: " & Err.Description)

End Sub

13-50

Bouncing Ball Simulation Example

Bouncing Ball Simulation Example

In this section...

“Example Overview” on page 13-51

“Building the Component” on page 13-51

“Using the Component in Microsoft® Visual Basic” on page 13-52

“Creating the Microsoft® Visual Basic Form” on page 13-53

Example Overview
This example is adapted from the ballode demo provided with the MATLAB
product. It demonstrates repeated event location, where the conditions are
changed after each terminal event.

This demo computes 10 bounces with calls to ode23, which is a MATLAB
function. A user-specified damping factor after each bounce attenuates the
speed of the ball. The trajectory is plotted using the output function odeplot.
In addition to the damping factor, the user can also provide the initial
velocity, the maximum number of bounce to track, and the maximum time
until demo is completed.

This example shows you how to create the COM component using the
MATLAB Builder NE product and how to use this COM component in a
Visual Basic application independent of MATLAB.

Note This example assumes that you have downloaded the M-code to the
matlabroot folder.

Building the Component

1 At the MATLAB command prompt, change folders to matlabroot/BallODE.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

13-51

13 Using COM Components in Microsoft® Visual Basic® Applications

Be sure to choose a supported compiler. See “Compiler Requirements”
on page 9-2.

3 Enter the command deploytool to open the Deployment Tool window.

4 Use the Deployment Tool to create a project with the following settings:

Setting Value

Project name bouncingBall

Class name bouncingBallclass

Project folder The name of your work folder followed by the
component name

Generate Verbose
Output

Selected

5 Locate your work folder, navigate to matlabroot/BallODE, and add
ballode.m to the project.

6 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool window. The files that are needed for the
component are copied to two newly created folders, src and distrib, in the
bouncingBall folder. A copy of the build log is placed in the src folder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM.

To create a Microsoft Visual Basic project and add references to the necessary
libraries:

1 Start Visual Basic.

2 Create a new Standard EXE project.

3 Select Project > References.

13-52

Bouncing Ball Simulation Example

4 Select the following libraries:

• bouncingBall 1.0 Type Library

(If you named your class something other than bouncingBall or gave
a different version number, click and use the appropriate component
and corresponding type library.)

• MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page
14-4 for information on this.

Creating the Microsoft Visual Basic Form
The next task is to create a front end or a Microsoft Visual Basic form for the
application. End users enter data with this form.

To create a new user form and populate it with the necessary controls:

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Check thatMicrosoft Windows Common Controls 6.0 is selected. You
will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface with the
properties listed in the following table.

Control Type Control Name Properties Purpose

Form frmBallOde Caption = Bouncing Ball
ODE

Container for all
components.

Frame frmInput Name = frmInput*

Caption = Input Data
Points

Groups all input controls.

13-53

13 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

Frame frmOutput Name = frmOutput*

Caption = Output
Coefficients

Groups all output
controls.

Label lblInitVal Caption = Initial
Velocity

Labels the text box
txtInitVal.

TextBox txtInitVal Text = Holds initial velocity by
which ball is thrown into
the air.

Label lblDamp Caption = Damping
Factor

Labels the text box
txtDamp.

TextBox txtDamp Text = Holds damping factor for
the bounce, that is, the
factor by which the speed
of the ball is reduced
after it bounces.

Label lblIter Caption = Number of
Bounces

Labels the text box
txtIter.

TextBox txtIter Text = Holds number of
iterations or bounces
to track.

Label lblFinalTime Caption = Maximum Time Labels the text box
txtFinalTime.

TextBox txtFinalTime Text = Stores time until demo is
completed.

ListView lstBounce Name = lstBounce

GridLines = True

LabelEdit = lvwManual

View = lvwReport

Displays the time stamp
when ball bounces off the
ground.

13-54

Bouncing Ball Simulation Example

Control Type Control Name Properties Purpose

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes the function.

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes the dialog box
without executing the
function.

4 When the design is complete, save the project by selecting File > Save.
When prompted for the project name, type BallOde.vbp, and for the form,
type frmBallOde.frm.

5 In the Project dialog box, right-click frmBallOde and select View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theBall As Variant ' Variable to hold the COM object.

Private Sub cmdCancel_Click()

' If the user presses the Cancel button, unload the form.

Unload Me

End Sub

Private Sub Form_Initialize()

Dim Len1 As Long ' Used to set length of columns for list box.

Dim Len2 As Long ' Used to set length of columns for list box.

On Error GoTo Handle_Error

' Set length of the each column based on length of the listbox

' such that the two columns span the maximum area without

' creating a horizontal scroll bar.

Len2 = lstBounce.Width / 2

Len1 = (lstBounce.Width - Len2) - 300

' Add column headers to each column in the list box.

Call lstBounce.ColumnHeaders.Add(, , "Bounce", Len1)

Call lstBounce.ColumnHeaders.Add(, , "Time", Len2)

13-55

13 Using COM Components in Microsoft® Visual Basic® Applications

' Set tab indices for each component.

txtInitVel.TabIndex = 1

txtDamp.TabIndex = 2

txtIter.TabIndex = 3

txtFinalTime.TabIndex = 4

cmdEvaluate.TabIndex = 5

cmdCancel.TabIndex = 6

lstBounce.TabStop = False

' Create the COM object

' If there is an error, handle it accordingly.

Set theBall = CreateObject("bouncingBall.bouncingBall.1_0")

Exit Sub

Handle_Error:

' Error handling code

MsgBox ("Error " & Err.Description)

End Sub

Private Sub cmdEvaluate_Click()

' Dim R As Range

Dim zeroTime As Variant ' Result variable object.

Dim loopCount As Integer

Dim item As ListItem

' Check if the object was created properly.

' If not, go to the error handling routine.

If theBall Is Nothing Then GoTo Exit_Form

' If there is an error, continue with the code.

On Error Resume Next

' Process inputs

' If the user does not provide the values for input parameters,

' use the default values.

If txtDamp.Text = Empty Then

txtDamp.Text = 0.9

End If

If txtInitVel.Text = Empty Then

txtInitVel.Text = 20

End If

If txtIter.Text = Empty Then

13-56

Bouncing Ball Simulation Example

txtIter.Text = 15

End If

If txtFinalTime.Text = Empty Then

txtFinalTime.Text = 20

End If

'Compute Bouncing ball data

Call theBall.ballode(1, zeroTime, CDbl(txtIter.Text),_

CDbl(txtDamp.Text), CDbl(txtFinalTime.Text),_

CDbl(txtInitVel.Text))

' Display the output values (time stamp when ball bounces on

' the ground).

Call lstBounce.ListItems.Clear

For loopCount = LBound(zeroTime, 1) To UBound(zeroTime, 1)

Set item = lstBounce.ListItems.Add(, , Format(loopCount))

Call item.ListSubItems.Add(, , Format(zeroTime(loopCount,_

1), "##.###"))

Next

Call lstBounce.Refresh

GoTo Exit_Form

Handle_Error:

' Error handling routine

MsgBox (Err.Description)

Exit_Form:

End Sub

13-57

13 Using COM Components in Microsoft® Visual Basic® Applications

13-58

14

How the MATLAB Builder
NE Product Creates COM
Components

• “Overview of Internal Processes” on page 14-2

• “Component Registration” on page 14-4

• “Data Conversion” on page 14-9

• “Calling Conventions” on page 14-23

14 How the MATLAB® Builder™ NE Product Creates COM Components

Overview of Internal Processes

In this section...

“How Is a MATLAB® Builder NE Component Created?” on page 14-2

“Code Generation” on page 14-2

“Create Interface Definitions” on page 14-3

“C++ Compilation” on page 14-3

“Linking and Resource Binding” on page 14-3

“Registration of the DLL” on page 14-3

How Is a MATLAB Builder NE Component Created?
The process of creating a MATLAB Builder NE component is completely
automatic from a user point of view. You specify a list of M-files to process
and a few additional pieces of information, such as the component name, the
class names, and the version number.

Code Generation
The first step in the build process generates all source code and other
supporting files needed to create the component. It also creates the main
source file (mycomponent_dll.cpp) containing the implementation of each
exported function of the DLL. The compiler additionally produces an Interface
Description Language (IDL) file (mycomponent_idl.idl), containing the
specifications for the component’s type library, interface, and class, with
associated GUIDs. (GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files
(myclass_com.hpp and myclass_com.cpp). In addition to these source files,
the compiler generates a DLL exports file (mycomponent.def) and a resource
script.

14-2

Overview of Internal Processes

Create Interface Definitions
The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent_idl.idl), creating the interface header
file (mycomponent_idl.h), the interface GUID file (mycomponent_idl_i.c),
and the component type library file (mycomponent_idl.tlb). The interface
header file contains type definitions and function declarations based on the
interface definition in the IDL file. The interface GUID file contains the
definitions of the GUIDs from all interfaces in the IDL file. The component
type library file contains a binary representation of all types and objects
exposed by the component.

C++ Compilation
The third step compiles all C/C++ source files generated in steps 1 and
2 into object code. One additional file containing a set of C++ template
classes (mclcomclass.h) is included at this point. This file contains template
implementations of all necessary COM base classes, as well as error handling
and registration code.

Linking and Resource Binding
The fourth step produces the finished DLL for the component. This step
invokes the linker on the object files generated in step 3 and the necessary
MATLAB libraries to produce a DLL component (mycomponent_1_0.dll).
The resource compiler is then invoked on the DLL, along with the resource
script generated in step 1, to bind the type library file generated in step 2
into the completed DLL.

Registration of the DLL
The final build step registers the DLL on the system, as described in
“Component Registration” on page 14-4.

14-3

14 How the MATLAB® Builder™ NE Product Creates COM Components

Component Registration

In this section...

“Self-Registering Components” on page 14-4

“Globally Unique Identifier” on page 14-5

“Versioning” on page 14-7

Self-Registering Components
When the MATLAB Builder NE product creates a component, it automatically
generates a binary file called a type library. As a final step of the build, this
file is bound with the resulting DLL as a resource.

MATLAB Builder NE COM components are all self-registering. A
self-registering component contains all the necessary code to add or remove a
full description of itself to or from the system registry. The mwregsvr utility,
distributed with the MCR, registers self-registering DLLs. For example, to
register a component called mycomponent_1_0.dll, issue this command at
the DOS command prompt:

mwregsvr mycomponent_1_0.dll

When mwregsvr completes the registration process, it displays a message
indicating success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.dll

unregisters the component.

A component installed onto a particular machine must be registered with
mwregsvr. If you move a component into a different folder on the same
machine, you must repeat the registration process. When deleting a
component from a specific machine, first unregister it to ensure that the
registry does not retain erroneous information.

14-4

Component Registration

Tip The mwregsvr utility invokes a process that is similar to regsvr32.exe,
except that mwregsvr does not require interaction with a user at the console.
The regsvr32.exe process belongs to the Windows OS and is used to register
dynamic link libraries and Microsoft® ActiveX® controls in the registry. This
program is important for the stable and secure running of your computer and
should not be terminated. You must specify the full path of the component
when calling mwregsvr, or make the call from the folder in which the
component resides. You can use regsvr32.exe as an alternative to mwregsvr
to register your library.

Globally Unique Identifier
Information is stored in the registry as keys with one or more associated
named values. The keys themselves have values of primarily two types:
readable strings and GUIDs. (GUID is an acronym for Globally Unique
Identifier, a 128-bit integer guaranteed always to be unique.)

The builder automatically generates GUIDs for COM classes, interfaces, and
type libraries that are defined within a component at build time, and codes
these keys into the component’s self-registration code.

The interface to the system registry is folder based. COM-related
information is stored under a top-level key called HKEY_CLASSES_ROOT. Under
HKEY_CLASSES_ROOT are several other keys under which the builder writes
component information.

Caution Do not delete the DLL-file in your project’s src folder between
builds. Doing so causes the GUIDs to be regenerated on the subsequent build.
To preserve an older version of the DLL, register it on your system before
rebuilding your project.

See the following table for a list of the keys and their definitions.

14-5

14 How the MATLAB® Builder™ NE Product Creates COM Components

Key Definition

HKEY_CLASSES_ROOT\CLSID Information about COM classes on
the system. Each component
creates a new key under
HKEY_CLASSES_ROOT\CLSID
for each of its COM classes. The
key created has a value of the
GUID that has been assigned the
class and contains several subkeys
with information about the class.

HKEY_CLASSES_ROOT\Interface Information about COM interfaces
on the system. Each component
creates a new key under
HKEY_CLASSES_ROOT\Interface
for each interface it defines. This
key has the value of the GUID
assigned to the interface and
contains subkeys with information
about the interface.

HKEY_CLASSES_ROOT\TypeLib Information about type libraries
on the system. Each component
creates a key for its type library
with the value of the GUID
assigned to it. Under this key a
new key is created for each version
of the type library. Therefore,
new versions of type libraries with
the same name reuse the original
GUID but create a new subkey for
the new version.

HKEY_CLASSES_ROOT\<ProgID>,
HKEY_CLASSES_ROOT\<VerIndProgID>

These two keys are created for
the component’s Program ID and
Version Independent Program ID.
These keys are constructed from
strings of the following forms:

component-name.class-name
component-name.class-name

14-6

Component Registration

Key Definition

version-number

These keys are useful for
creating a class instance from
the component and class names
instead of the GUIDs.

Versioning
MATLAB Builder NE components support a simple versioning mechanism
designed to make building and deploying multiple versions of the same
component easy to implement. The version number of a component appears
as part of the DLL name, as well as part of the version-dependent ID in the
system registry.

When a component is created, you can specify a version number. (The default
is 1.0.) During the development of a specific version of a component, the
version number should be kept constant. When this is done, the MATLAB
Compiler product, in certain cases, reuses type library, class, and interface
GUIDs for each subsequent build of the component. This avoids the creation
of an excessive number of registry keys for the same component during
multiple builds, as occurs if new GUIDs are generated for each build.

When a new version number is introduced, MATLAB Compiler generates new
class and interface GUIDs so that the system recognizes them as distinct from
previous versions, even if the class name is the same. Therefore, once you
deploy a built component, use a new version number for any changes made
to the component. This ensures that after you deploy the new component, it
is easy to manage the two versions.

MATLAB Compiler implements the versioning rules for a specific component
name, class name, and version number by querying the system registry for an
existing component with the same name:

• If an existing component has the same version, it uses the GUID of the
existing component’s type library. If the name of the new class matches the

14-7

14 How the MATLAB® Builder™ NE Product Creates COM Components

previous version, it reuses the class and interface GUIDs. If the class names
do not match, it generates new GUIDs for the new class and interface.

• If it finds an existing component with a different version, it uses the
existing type library GUID and creates a new subkey for the new version
number. It generates new GUIDs for the new class and interface.

• If it does not find an existing component of the specified name, it generates
new GUIDs for the component’s type library, class, and interface.

14-8

Data Conversion

Data Conversion

In this section...

“Conversion Rules” on page 14-9

“Array Formatting Flags” on page 14-19

“Data Conversion Flags” on page 14-21

Conversion Rules
This section describes the data conversion rules for COM components created
with the MATLAB Builder NE product. These components are dual interface
COM objects that support data types compatible with Automation.

Note Automation (formerly called OLE Automation) is a technology that
allows software packages to expose their unique features to scripting tools
and other applications. Automation uses the Component Object Model (COM),
but may be implemented independently from other OLE features, such as
in-place activation.

Caution Be aware that IIS (Internet Information Service) usually prevents
most COM automation on the basis that it may pose a security risk.
Therefore, XLSREAD and other Automation services may fail when served by
IIS, leading to errors such as object reference not set.

When a method is invoked on a MATLAB Builder NE component, the input
parameters are converted to MATLAB internal array format and passed to the
compiled MATLAB function. When the function exits, the output parameters
are converted from MATLAB internal array format to COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values.

14-9

14 How the MATLAB® Builder™ NE Product Creates COM Components

The Win32 API provides many functions for creating and manipulating
VARIANTs in C/C++, and Microsoft Visual Basic provides native language
support for this type. See the Microsoft Visual Studio documentation for
definitions and API support for COM VARIANTs. VARIANT variables are self
describing and store their type code as an internal field of the structure.

Note This discussion of data refers to both VARIANT and Variant data types.
VARIANT is the C++ name and Variant is the corresponding data type in
Visual Basic.

See VARIANT Type Codes Supported on page 14-10 for a list of the VARIANT
type codes supported by the builder components.

See MATLAB® to COM VARIANT Conversion Rules on page 14-12 and COM
VARIANT to MATLAB® Conversion Rules on page 14-17 for conversion rules
between COM VARIANTs and MATLAB arrays.

VARIANT Type Codes Supported

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code (Visual
Basic)

Visual
Basic
Type Definition

VT_EMPTY - vbEmpty - Uninitialized
VARIANT

VT_I1 char - - Signed one-byte
character

VT_UI1 unsigned char vbByte Byte Unsigned one-byte
character

VT_I2 short vbInteger Integer Signed two-byte
integer

VT_UI2 unsigned
short

- - Unsigned two-byte
integer

VT_I4 long vbLong Long Signed four-byte
integer

14-10

Data Conversion

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code (Visual
Basic)

Visual
Basic
Type Definition

VT_UI4 unsigned long - - Unsigned four-byte
integer

VT_R4 float vbSingle Single IEEE® four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY CY+ vbCurrency Currency Currency value
(64-bit integer, scaled
by 10,000)

VT_BSTR BSTR+ vbString String String value

VT_ERROR SCODE+ vbError - HRESULT (signed
four-byte integer
representing a COM
error code)

VT_DATE DATE+ vbDate Date Eight-byte
floating-point value
representing date
and time

VT_INT int - - Signed integer;
equivalent to type
int

VT_UINT unsigned int - - Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL DECIMAL+ vbDecimal - 96-bit (12-byte)
unsigned integer,
scaled by a variable
power of 10

14-11

14 How the MATLAB® Builder™ NE Product Creates COM Components

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code (Visual
Basic)

Visual
Basic
Type Definition

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean
value (0xFFFF =
True; 0x0000 = False)

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer
to an object

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY Bitwise combine
VT_ARRAY with any
basic type to declare
as an array

<anything>|VT_BYREF Bitwise combine
VT_BYREF with any
basic type to declare
as a reference to a
value

+ Denotes Windows specific type. Not part of standard C/C++.

MATLAB to COM VARIANT Conversion Rules

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

cell A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

A multidimensional
cell array converts
to a VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of
each array member
conforming to the

14-12

Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

conversion rule for the
MATLAB data type of
the corresponding cell.

structure VT_DISPATCH VT_DISPATCH A MATLAB struct
array is converted to
an MWStruct object.
(See “Class MWStruct”
on page 15-16.) This
object is passed as a
VT_DISPATCH type.

char A 1-by-1 char matrix
converts to a VARIANT
of type VT_BSTR with
string length = 1.

A 1-by-L char matrix is
assumed to represent
a string of length Lin
MATLAB. This case
converts to a VARIANT
of type VT_BSTR with a
string length = L. char
matrices of more than
one row, or of a higher
dimensionality convert
to a VARIANT of type
VT_BSTR|VT_ARRAY.
Each string in the
converted array
is of length 1 and
corresponds to each
character in the
original matrix.

Arrays of strings are
not supported as char
matrices. To pass an
array of strings, use
a cell array of 1-by-L
char matrices.

14-13

14 How the MATLAB® Builder™ NE Product Creates COM Components

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

sparse VT_DISPATCH VT_DISPATCH A MATLAB sparse
array is converted to
an MWSparse object.
(See “Class MWSparse”
on page 15-26.) This
object is passed as a
VT_DISPATCH type.

double A real 1-by-1 double
matrix converts to
a VARIANT of type
VT_R8. A complex
1-by-1 double matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
double matrix converts
to a VARIANT of type
VT_R8|VT_ARRAY.
A complex
multidimensional
double matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. See “Class
MWComplex” on page
15-24

single A real 1-by-1 single
matrix converts to a
VARIANT of type VT_R4.
A complex 1-by-1 single
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
single matrix converts
to a VARIANT of type
VT_R4|VT_ARRAY.
A complex
multidimensional
single matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

14-14

Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

int8 A real 1-by-1 int8
matrix converts to a
VARIANT of type VT_I1.
A complex 1-by-1 int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional int8
matrix converts to
a VARIANT of type
VT_I1|VT_ARRAY.
A complex
multidimensional int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

uint8 A real 1-by-1 uint8
matrix converts to
a VARIANT of type
VT_UI1. A complex
1-by-1 uint8 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_UI1|VT_ARRAY.A
complex
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

int16 A real 1-by-1 int16
matrix converts to a
VARIANT of type VT_I2.
A complex 1-by-1 int16
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
int16 matrix converts
to a VARIANT of type
VT_I2|VT_ARRAY.
A complex
multidimensional
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

14-15

14 How the MATLAB® Builder™ NE Product Creates COM Components

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

uint16 A real 1-by-1 uint16
matrix converts to
a VARIANT of type
VT_UI2. A complex
1-by-1 uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_UI2|VT_ARRAY.
A complex
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex
1-by-1 int32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
int32 matrix converts
to a VARIANT of type
VT_I4|VT_ARRAY.
A complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
uint32 matrix converts
to a VARIANT of type
VT_UI4|VT_ARRAY.
A complex
multidimensional
uint32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

Function handle VT_EMPTY VT_EMPTY Not supported

Java™ class VT_EMPTY VT_EMPTY Not supported

User class VT_EMPTY VT_EMPTY Not supported

logical VT_Bool VT_Bool|VT_ARRAY

14-16

Data Conversion

COM VARIANT to MATLAB Conversion Rules

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_EMPTY N/A Empty array created.

VT_I1 int8

VT_UI1 uint8

VT_I2 int16

VT_UI2 uint16

VT_I4 int32

VT_UI4 uint32

VT_R4 single

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR
converts to a 1-by-L MATLAB
char array, where L = the
length of the string to be
converted. A VARIANT of type
VT_BSTR|VT_ARRAY converts to
a MATLAB cell array of 1-by-L
char arrays.

VT_ERROR int32

14-17

14 How the MATLAB® Builder™ NE Product Creates COM Components

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_DATE double VARIANT dates are stored as
doubles starting at midnight
Dec. 31, 1899. MATLAB dates
are stored as doubles starting
at 0/0/00 00:00:00. Therefore,
a VARIANT date of 0.0 maps to
a MATLAB numeric date of
693960.0. VARIANT dates are
converted to MATLAB double
types and incremented by
693960.0.

VARIANT dates can be optionally
converted to strings. See “Data
Conversion Flags” on page
14-21 for more information on
type coercion.

VT_INT int32

VT_UINT uint32

VT_DECIMAL double

VT_BOOL logical

VT_DISPATCH Varies IDispatch* pointers are
treated within the context of
what they point to. Objects
must be supported types with
known data extraction and
conversion rules, or expose a
generic Value property that
points to a single VARIANT type.
Data extracted from an object
is converted based on the rules
for the particular VARIANT
obtained.

14-18

Data Conversion

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

Currently, support exists for
Excel Range objects as well as
the builder types MWStruct,
MWComplex, MWSparse, and
MWArg. See “Utility Library
Classes” on page 15-3 for
information on the builder types
to use with COM components.

anything|VT_BYREF Varies Pointers to any of the basic
types are processed according
to the rules for what they point
to. The resulting MATLAB
array contains a deep copy of
the values.

anything|VT_ARRAY Varies Multidimensional VARIANT
arrays convert to
multidimensional MATLAB
arrays, each element converted
according to the rules for the
basic types. Multidimensional
VARIANT arrays of type
VT_VARIANT|VT_ARRAY convert
to multidimensional cell arrays,
each cell converted according to
the rules for that specific type.

Array Formatting Flags
The builder components have flags that control how array data is formatted
in both directions. Generally, you should develop client code that matches the
intended inputs and outputs of the MATLAB functions with the corresponding
methods on the compiled COM objects, in accordance with the rules listed in
MATLAB® to COM VARIANT Conversion Rules on page 14-12 and COM

14-19

14 How the MATLAB® Builder™ NE Product Creates COM Components

VARIANT to MATLAB® Conversion Rules on page 14-17. In some cases
this is not possible, for example, when existing MATLAB code is used in
conjunction with a third-party product like Excel.

The following table shows the array formatting flags.

Array Formatting Flags

Flag Description

InputArrayFormat Defines the array formatting rule used on input arrays.
An input array is a VARIANT array, created by the
client, sent as an input parameter to a method call on a
compiled COM object.

Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays
as matrices. When the input VARIANT is of type
VT_ARRAY| type, where type is any numeric type,
this flag has no effect. When the input VARIANT is of
type VT_VARIANT|VT_ARRAY, VARIANTs in the array are
examined. If they are single-valued and homogeneous
in type, a MATLAB matrix of the appropriate type is
produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB
cell arrays.

InputArrayIndFlag Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays,
i.e., VARIANT arrays of VARIANTs, which themselves are
arrays). The default value for this flag is zero, which
applies the InputArrayFormat flag to the outermost
array. When this flag is greater than zero, e.g., equal
to N, the formatting rule attempts to apply itself to the
Nth level of nesting.

14-20

Data Conversion

Array Formatting Flags (Continued)

Flag Description

OutputArrayFormat Defines the array formatting rule used on output arrays.
An output array is a MATLAB array, created by the
compiled COM object, sent as an output parameter
from a method call to the client. The values for this
flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the
corresponding InputArrayFormat flag values.

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array
indirection level used with the OutputArrayFormat flag.
This flag works exactly like InputArrayIndFlag.

AutoResizeOutput (Applies to Excel ranges only.) When the target output
from a method call is a range of cells in an Excel
worksheet and the output array size and shape is not
known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments.
Useful when calling a MATLAB Builder NE component
from Excel where the MATLAB function returns outputs
as row vectors, and you want the data in columns.

Data Conversion Flags
MATLAB Builder NE components contain flags to control the conversion of
certain VARIANT types to MATLAB types. These flags are as follows:

• “CoerceNumericToType” on page 14-22

• “InputDateFormat” on page 14-22

• “OutputAsDate As Boolean” on page 14-22

• “DateBias As Long” on page 14-22

14-21

14 How the MATLAB® Builder™ NE Product Creates COM Components

CoerceNumericToType
This flag tells the data converter to convert all numeric VARIANT data to one
specific MATLAB type. VARIANT type codes affected by this flag are VT_I1,
VT_UI1, VT_I2, VT_UI2, VT_I4, VT_UI4, VT_R4, VT_R8, VT_CY, VT_DECIMAL,
VT_INT, VT_UINT, VT_ERROR, VT_BOOL, and VT_DATE. Valid values for this
flag are mwTypeDefault, mwTypeChar, mwTypeDouble, mwTypeSingle,
mwTypeLogical, mwTypeInt8, mwTypeUint8, mwTypeInt16, mwTypeUint16,
mwTypeInt32, and mwTypeUint32.

The default for this flag, mwTypeDefault, converts numeric data according to
the rules listed in “Data Conversion” on page 14-9.

InputDateFormat
This flag tells the data converter how to convert VARIANT dates to MATLAB
dates. Valid values for this flag are mwDateFormatNumeric (default) and
mwDateFormatString. The default converts VARIANT dates according to
the rule listed in VARIANT Type Codes Supported on page 14-10 . The
mwDateFormatString flag converts a VARIANT date to its string representation.
This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean
This flag instructs the data converter to process an output argument as a
date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by
the COM date bias (693960) as well as coerced to COM dates. Set this flag to
True to convert all output values of type Double.

DateBias As Long
This flag sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, which represents
the difference between the COM Date type and MATLAB numeric dates. This
flag allows existing MATLAB code that already performs the increment of
numeric dates by 693960 to be used unchanged with the builder components.
To process dates with such code, set this property to 0.

14-22

Calling Conventions

Calling Conventions

In this section...

“Producing a COM Class” on page 14-23

“IDL Mapping” on page 14-24

“Microsoft® Visual Basic Mapping” on page 14-25

Producing a COM Class
Producing a COM class requires the generation of

• A class definition file in Interface Description Language (IDL)

• One or more associated C++ class definition/implementation files

The MATLAB Builder NE product automatically produces the necessary IDL
and C/C++ code to build each COM class in the component. This process is
generally transparent to you when you use the builder to generate a COM
component, and to users of the COM component when they program with it.

For information about IDL and C++ coding rules for building COM objects
and for mappings to other languages, see articles in the MSDN Library.

The following table shows the mapping of a generic M-function to IDL code
and to Microsoft Visual Basic.

14-23

http://msdn.microsoft.com/library/

14 How the MATLAB® Builder™ NE Product Creates COM Components

Code Sample

Generic
M-Code function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

IDL Code
HRESULT foo([in] long nargout,

[in,out] VARIANT* Y1,
[in,out] VARIANT* Y2,
.
.
[in,out] VARIANT* varargout,
[in] VARIANT X1,
[in] VARIANT X2,
.
.
[in] VARIANT varargin);

Visual Basic
Code Sub foo(nargout As Long, _

Y1 As Variant, _
Y2 As Variant, _
.
.
varargout As Variant, _
X1 As Variant, _
X2 As Variant, _
.
.
varargin As Variant)

IDL Mapping
The IDL function definition is generated by producing a function with the
same name as the original M-function and an argument list containing all
inputs and outputs of the original plus one additional parameter, nargout.

When present, the nargout parameter is an [in] parameter of type long. It
is always the first argument in the list. This parameter allows correct passage
of the MATLAB nargout parameter to the compiled M-code. The nargout

14-24

Calling Conventions

parameter is not produced if you encapsulate an M-function containing no
outputs.

Following the nargout parameter, the outputs are listed in the order they
appear on the left side of the MATLAB function, and are tagged as [in,out],
meaning that they are passed in both directions.

The function inputs are listed next, appearing in the same order as they
do on the right side of the original function. All inputs are tagged as [in]
parameters.

When present, the optional varargin/varargout parameters are always
listed as the last input parameters and the last output parameters. All
parameters other than nargout are passed as COM VARIANT types. “Data
Conversion” on page 14-9 lists the rules for conversion between MATLAB
arrays and COM VARIANTs.

Microsoft Visual Basic Mapping
Microsoft Visual Basic provides native support for COM Variants with the
Variant type, as well as implicit conversions for all Visual Basic basic types
to and from Variants. In general, arrays/scalars of any Visual Basic basic
type, as well as arrays/scalars of Variant types, can be passed as arguments.

MATLAB Builder NE components also provide direct support for the Microsoft
Excel Range object, used by Visual Basic for Applications to represent a range
of cells in an Excel worksheet.

See the Visual Basic for Applications documentation included with Microsoft
Excel for more information on Visual Basic data types.

See the MSDN Library for more information about Visual Basic and about
Excel Range manipulation.

14-25

http://msdn.microsoft.com/library/

14 How the MATLAB® Builder™ NE Product Creates COM Components

14-26

15

Utility Library for Microsoft
COM Components

• “Referencing Utility Classes” on page 15-2

• “Utility Library Classes” on page 15-3

• “Enumerations” on page 15-31

15 Utility Library for Microsoft® COM Components

Referencing Utility Classes
This section describes the MWComUtil library. This library is freely
distributable and includes several functions used in array processing, as well
as type definitions used in data conversion. This library is contained in the
file mwcomutil.dll. It must be registered once on each machine that uses
Microsoft COM components created by MATLAB Builder EX.

Register the MWComUtil library at the DOS command prompt with the
command:

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes” on
page 15-3) and three enumerated types (see “Enumerations” on page 15-31).
Before using these types, you must make explicit references to the MWComUtil
type libraries in the Microsoft Visual Basic IDE. To do this select Tools >
References from the main menu of the Visual Basic Editor. The References
dialog box appears with a scrollable list of available type libraries. From this
list, select MWComUtil 1.0 Type Library and click OK.

Note You must specify the full path of the component when calling mwregsvr,
or make the call from the folder in which the component resides.

15-2

Utility Library Classes

Utility Library Classes

In this section...

“Class MWUtil” on page 15-3

“Class MWFlags” on page 15-10

“Class MWStruct” on page 15-16

“Class MWField” on page 15-23

“Class MWComplex” on page 15-24

“Class MWSparse” on page 15-26

“Class MWArg” on page 15-29

Class MWUtil
The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Microsoft
Excel). It is most efficient to declare one variable of this type in global scope
within each module that uses it. The methods of MWUtil are:

• “Sub MWInitApplication(pApp As Object)” on page 15-3

• “Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])” on page 15-5

• “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])” on page 15-7

• “Sub MWDate2VariantDate(pVar)” on page 15-9

The function prototypes use Visual Basic syntax.

Sub MWInitApplication(pApp As Object)
Initializes the library with the current instance of Microsoft Excel.

15-3

15 Utility Library for Microsoft® COM Components

Parameters.

Argument Type Description

pApp Object A valid reference to
the current Excel
application

Return Value. None.

Remarks. This function must be called once for each session of Excel that
uses COM components created by MATLAB Builder for .NET. An error is
generated if a method call is made to a member class of any MATLAB Builder
for .NET COM component, and the library has not been initialized.

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument
of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

15-4

Utility Library Classes

Note If you are developing concurrently with multiple versions of MATLAB
and MWComUtil.dll, for example, using this syntax:

Set MCLUtil = CreateObject("MWComUtil.MWUtil")

requires you to recompile your COM modules every time you upgrade. To
avoid this, make your call to the MWUtil module version-specific, for example:

Set MCLUtil = CreateObject("MWComUtil.MWUtilx.x")

where x.x is the specific version number.

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
Packs a variable length list of Variant arguments into a single Variant
array. This function is typically used for creating a varargin cell from a list
of separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted
by a Variant type of vbError with a value of &H80020004.)

Parameters.

Argument Type Description

pVarArg Variant Receives the resulting
array

[Var0], [Var1], ... Variant Optional list of
Variants to pack into
the array. From 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before
processing the list.

15-5

15 Utility Library for Microsoft® COM Components

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature

function y = mysum(varargin)
y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows
up to 10 inputs, and returns the result y. If an error occurs, the function
returns the error string. This function assumes that MWInitApplication
has been previously called.

Function mysum(Optional V0 As Variant, _
Optional V1 As Variant, _
Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum = y
Exit Function

Handle_Error:
mysum = Err.Description

End Function

15-6

Utility Library Classes

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As
Boolean = False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

Parameters.

Argument Type Description

VarArg Variant Input array of Variants
to be processed

nStartAt Long Optional starting
index (zero-based)
in the array to begin
processing. Default = 0.

bAutoResize Boolean Optional auto-resize
flag. If this flag is
True, any Excel range
output arguments
are resized to fit the
dimensions of the
Variant to be copied.
The resizing process is
applied relative to the
upper left corner of the
supplied range. Default
= False.

[pVar0],[pVar1],
...

Variant Optional list of
Variants to receive the
array items contained
in VarArg. From 0 to
32 arguments can be
passed.

Return Value. None.

15-7

15 Utility Library for Microsoft® COM Components

Remarks. This function can process a Variant array in one single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into
several Excel ranges, while auto-resizing each range. The varargout
parameter is supplied from a method that has been compiled from the
MATLAB function.

function varargout = randvectors
for i=1:nargout

varargout{i} = rand(i,1);
end

This function produces a sequence of nargout random column vectors, with
the length of the ith vector equal to i. Assume that this function is included in
a class named myclass that is included in a component named mycomponent
with a version of 1.0. The Visual Basic subroutine takes no arguments and
places the results into Excel columns starting at A1, B1, C1, and D1. If an
error occurs, a message box displays the error text. This function assumes
that MWInitApplication has been previously called.

Sub GenVectors()
Dim aClass As Object
Dim aUtil As Object
Dim v As Variant
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim R4 As Range

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Set R1 = Range("A1")
Set R2 = Range("B1")
Set R3 = Range("C1")
Set R4 = Range("D1")
Call aClass.randvectors(4, v)
Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub

15-8

Utility Library Classes

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

Parameters.

Argument Type Description

pVar Variant Variant to be converted

Return Value. None.

Remarks. MATLAB handles dates as double-precision floating-point
numbers with 0.0 representing 0/0/00 00:00:00. By default, numeric dates
that are output parameters from compiled MATLAB functions are passed
as Doubles that need to be decremented by the COM date bias as well as
coerced to COM dates. The MWDate2VariantDate method performs this
transformation and additionally converts dates in string form to COM date
types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function.

function x = getdates(n, inc)
y = now;
for i=1:n

x(i,1) = y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with
a version of 1.0. The subroutine takes an Excel range and a Double as
inputs and places the generated dates into the supplied range. If an error

15-9

15 Utility Library for Microsoft® COM Components

occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim aUtil As Object

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call aUtil.MWDate2VariantDate(R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion
flags (See “Data Conversion Rules” on page 9-4 for more information on
conversion between MATLAB and COM Automation types.) All MATLAB
Builder for .NET COM components contain a reference to an MWFlags object
that can modify data conversion rules at the object level. This class contains
these properties and method:

• “Property ArrayFormatFlags As MWArrayFormatFlags” on page 15-10

• “Property DataConversionFlags As MWDataConversionFlags” on page
15-13

• “Sub Clone(ppFlags As MWFlags)” on page 15-15

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix
or a cell array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains six properties:

• “Property InputArrayFormat As mwArrayFormat” on page 15-11

15-10

Utility Library Classes

• “Property InputArrayIndFlag As Long” on page 15-12

• “Property OutputArrayFormat As mwArrayFormat” on page 15-12

• “Property OutputArrayIndFlag As Long” on page 15-13

• “Property AutoResizeOutput As Boolean” on page 15-13

• “Property TransposeOutput As Boolean” on page 15-13

Property InputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as input parameters
to .NET Builder class methods. The default value is mwArrayFormatMatrix.
The behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules” on page
9-4.

mwArrayFormatCell Coerces all arrays into cell arrays.
Input scalar or numeric array
arguments are converted to cell
arrays with each cell containing a
scalar value for the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an input argument is
encountered that is an array of
Variants (the default behavior is
to convert it to a cell array), the
data converter converts this array
to a matrix if each Variant is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible,
creates a cell array.

15-11

15 Utility Library for Microsoft® COM Components

Property InputArrayIndFlag As Long. This property governs the level at
which to apply the rule set by the InputArrayFormat property for nested
arrays (an array of Variants is passed and each element of the array is an
array itself). It is not necessary to modify this flag for varargin parameters.
The data conversion code automatically increments the value of this flag by
1 for varargin cells, thus applying the InputArrayFormat flag to each cell
of a varargin parameter. The default value is 0.

Property OutputArrayFormat As mwArrayFormat. This property of
type mwArrayFormat controls the formatting of arrays passed as output
parameters to MATLAB Builder NE class methods. The default value is
mwArrayFormatAsIs. The behaviors indicated by this flag are listed in the
next table.

Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules” on page
9-4.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an output cell array argument
is encountered (the default behavior
converts it to an array of Variants),
the data converter converts this
array to a Variant that contains a
simple numeric array if each cell is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible, an
array of Variants is created.

mwArrayFormatCell Coerces all output arrays into
arrays of Variants. Output scalar
or numeric array arguments are
converted to arrays of Variants,
each Variant containing a scalar
value for the respective index.

15-12

Utility Library Classes

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the
rule set by the OutputArrayFormat property for nested arrays. As with
the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges
only. When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the
call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper
left corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True
transposes the output arguments. This flag is useful when processing an
output parameter from a method call on a COM component, where the
MATLAB function returns outputs as row vectors, and you desire to place the
data into columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are
processed when type coercion is needed. The MWDataConversionFlags class
is a noncreatable class accessed through an MWFlags class instance. This
class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page 15-13

• “Property InputDateFormat As mwDateFormat” on page 15-14

• “PropertyOutputAsDate As Boolean” on page 15-14

• “PropertyDateBias As Long” on page 15-14

Property CoerceNumericToType As mwDataType. This property
converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code are
different types, e.g., Long, Integer, etc., and all variables passed to the
compiled MATLAB code must be doubles. The default value for this property
is mwTypeDefault, which uses the default rules in “Data Conversion Rules”
on page 9-4.

15-13

15 Utility Library for Microsoft® COM Components

Property InputDateFormat As mwDateFormat. This property converts
dates passed as input parameters to method calls on .NET Builder classes.
The default value is mwDateFormatNumeric. The behaviors indicated by this
flag are shown in the following table.

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in “Data
Conversion Rules” on page 9-4.

mwDateFormatString Convert input dates to strings.

PropertyOutputAsDate As Boolean. This property processes an output
argument as a date. By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing
COM to MATLAB numeric date conversions. The default value of this
property is 693960, representing the difference between the COM Date type
and MATLAB numeric dates. This flag allows existing MATLAB code that
already performs the increment of numeric dates by 693960 to be used
unchanged with COM components created by MATLAB Builder NE. To
process dates with such code, set this property to 0.

This example uses data conversion flags to reshape the output from a
method compiled from a MATLAB function that produces an output vector of
unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

if p((k+1)/2)

15-14

Utility Library Classes

p(((k*k+1)/2):k:q) = 0;
end

end
p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and
n. Assume that this function is included in a class named myclass that
is included in a component named mycomponent with a version of 1.0. The
subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function
produces a row vector, although you want the output in column format. It also
produces an unknown number of outputs, and you do not want to truncate
any output. To handle these issues, set the TransposeOutput flag and the
AutoResizeOutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an
explicit type declaration for the aClass variable. As with previous examples,
this function assumes that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

15-15

15 Utility Library for Microsoft® COM Components

Parameters.

Argument Type Description

ppFlags MWFlags Reference to an
uninitialized MWFlags
object that receives the
copy

Return Value. None

Remarks. Clone allocates a new MWFlags object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled
class method. This class contains seven properties/methods:

• “Sub Initialize([varDims], [varFieldNames])” on page 15-16

• “Property Item([i0], [i1], ..., [i31]) As MWField” on page 15-18

• “Property NumberOfFields As Long” on page 15-21

• “Property NumberOfDims As Long” on page 15-21

• “Property Dims As Variant” on page 15-21

• “Property FieldNames As Variant” on page 15-21

• “Sub Clone(ppStruct As MWStruct)” on page 15-22

Sub Initialize([varDims], [varFieldNames])
This method allocates a structure array with a specified number and size of
dimensions and a specified list of field names.

15-16

Utility Library Classes

Parameters.

Argument Type Description

varDims Variant Optional array of
dimensions

varFieldNames Variant Optional array of field
names

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1
and no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays.

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error
'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct
Set y = new MWStruct

'Initialize x to be 2X2 with fields "red", "green",
' and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"
Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

15-17

15 Utility Library for Microsoft® COM Components

'Add a new field to y
Call y.Initialize(, Array("name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Property Item([i0], [i1], ..., [i31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set/get the value of a field at a particular index in the structure
array.

Parameters.

Argument Type Description

i0,i1, ..., i31 Variant Optional index
arguments. Between 0
and 32 index arguments
can be entered. To
reference an element
of the array, specify all
indexes as well as the
field name.

Remarks. When accessing a named field through this property, you must
supply all dimensions of the requested field as well as the field name. This
property always returns a single field value, and generates a bad index error
if you provide an invalid or incomplete index list. Index arguments have
four basic formats:

• Field name only

This format may be used only in the case of a 1-by-1 structure array and
returns the named field’s value. For example:

x("red") = 0.2
x("green") = 0.4

15-18

Utility Library Classes

x("blue") = 0.6

In this example, the name of the Item property was neglected. This is
possible since the Item property is the default property of the MWStruct
class. In this case the two statements are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

• Single index and field name

This format accesses array elements through a single subscripting notation. A
single numeric index n followed by the field name returns the named field on
the nth array element, navigating the array linearly in column-major order.
For example, consider a 2-by-2 array of structures with fields "red", "green"
, and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

• All indices and field name

This format accesses an array element of an multidimensional array by
specifying n indices. These statements access all four of the elements of the
array in the previous example:

For I From 1 To 2
For J From 1 To 2

r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")

Next
Next

• Array of indices and field name

This format accesses an array element by passing an array of indices and a
field name. The next example rewrites the previous example using an index
array:

Dim Index(1 To 2) As Integer

15-19

15 Utility Library for Microsoft® COM Components

For I From 1 To 2
Index(1) = I
For J From 1 To 2

Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")

Next
Next

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

• You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one
index set. The combining stops when the number of dimensions has been
reached. For example:

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

• Field names are case sensitive.

15-20

Utility Library Classes

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions in
the struct array.

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the struct array.

Property FieldNames As Variant
The read-only FieldNames property returns an array of length
NumberOfFields that contains the field names of the elements of the structure
array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance.

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

On Error Goto Handle_Error
'
'... Call a method that returns an MWStruct in x
'
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)

For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields

y = x(I,J,FieldNames(K))
' ... Do something with y

15-21

15 Utility Library for Microsoft® COM Components

Next
Next

Next
Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

Parameters.

Argument Type Description

ppStruct MWStruct Reference to an
uninitialized MWStruct
object to receive the
copy

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic example illustrates the difference
between assignment and Clone for MWStruct objects.

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

15-22

Utility Library Classes

'Set reference of x1 to x2
Set x2 = x1

'Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)

'x2's "age" field is
'also modified 'x3's "age" field unchanged
x1("age") = 50

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Class MWField
The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains four properties/methods:

• “Property Name As String” on page 15-23

• “Property Value As Variant” on page 15-23

• “Property MWFlags As MWFlags” on page 15-23

• “Sub Clone(ppField As MWField)” on page 15-24

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field’s value (read/write). The Value property is the default
property of the MWField class. The value of a field can be any type that is
coercible to a Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a

15-23

15 Utility Library for Microsoft® COM Components

structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

Parameters.

Argument Type Description

ppField MWField Reference to an
uninitialized MWField
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from
a compiled class method. This class contains four properties/methods:

• “Property Real As Variant” on page 15-24

• “Property Imag As Variant” on page 15-25

• “Property MWFlags As MWFlags” on page 15-26

• “Sub Clone(ppComplex As MWComplex)” on page 15-26

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that
the underlying array must resolve to a numeric matrix (no cell data allowed).

15-24

Utility Library Classes

Valid Visual Basic numeric types for complex arrays include Byte, Integer,
Long, Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is
nonempty and the size and type of the underlying array do not match the size
and type of the Real property’s array, an error results when the object is
used in a method call.

Example. The following Visual Basic code creates a complex array with
the following entries:

x = [1+i 1+2i
2+i 2+2i]

Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I = 1 To 2

For J = 1 To 2
rval(I,J) = I
ival(I,J) = J

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag = ival

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

15-25

15 Utility Library for Microsoft® COM Components

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.

Argument Type Description

ppComplex MWComplex Reference to
an uninitialized
MWComplex object to
receive the copy

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has seven properties/methods:

• “Property NumRows As Long” on page 15-27

• “Property NumColumns As Long” on page 15-27

• “Property RowIndex As Variant” on page 15-27

• “Property ColumnIndex As Variant” on page 15-27

• “Property Array As Variant” on page 15-27

• “Property MWFlags As MWFlags” on page 15-28

• “Sub Clone(ppSparse As MWSparse)” on page 15-28

15-26

Utility Library Classes

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum
of the values in the RowIndex array.

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumRows is nonzero
and any row index is greater than NumRows, a bad-index error occurs. An error
also results if the number of elements in the RowIndex array does not match
the number of elements in the Array property’s underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this
property can be any type coercible to a Variant, as well as object types, with
the restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

15-27

15 Utility Library for Microsoft® COM Components

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each
MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

Parameters.

Argument Type Description

ppSparse MWSparse Reference to an
uninitialized MWSparse
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal
sparse array with the following entries:

X = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double

15-28

Utility Library Classes

Dim I As Long, K As Long

On Error GoTo Handle_Error
K = 1
For I = 1 To 4

rows(K) = I
cols(K) = I + 1
vals(K) = -1
K = K + 1
rows(K) = I
cols(K) = I
vals(K) = 2
K = K + 1
rows(K) = I + 1
cols(K) = I
vals(K) = -1
K = K + 1

Next
rows(K) = 5
cols(K) = 5
vals(K) = 2
Set x = New MWSparse
x.NumRows = 5
x.NumColumns = 5
x.RowIndex = rows
x.ColumnIndex = cols
x.Array = vals

.

.

.
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has three properties/methods:

15-29

15 Utility Library for Microsoft® COM Components

• “Property Value As Variant” on page 15-30

• “Property MWFlags As MWFlags” on page 15-30

• “Sub Clone(ppArg As MWArg)” on page 15-30

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.

Argument Type Description

ppArg MWArg Reference to an
uninitialized MWArg
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

15-30

Enumerations

Enumerations

In this section...

“Enum mwArrayFormat” on page 15-31

“Enum mwDataType” on page 15-31

“Enum mwDateFormat” on page 15-32

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the
array.

mwArrayFormatMatrix 1 Format the array as a
matrix.

mwArrayFormatCell 2 Format the array as a
cell array.

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type.

mwDataType Values

Constant Numeric Value MATLAB Type

mwTypeDefault 0 Not applicable

mwTypeLogical 3 logical

mwTypeChar 4 char

mwTypeDouble 6 double

15-31

15 Utility Library for Microsoft® COM Components

mwDataType Values (Continued)

Constant Numeric Value MATLAB Type

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric 0 Format dates as
numeric values

mwDateFormatString 1 Format dates as strings

15-32

A

Examples

Use this list to find examples in the documentation.

A Examples

COM Components
“Blocking Execution of a Console Application that Creates Figures” on
page 2-17
“Calling a COM Object in a Visual C++ Program” on page 12-11
“Creating and Using a varargin Array in Microsoft® Visual Basic
Programs” on page 12-26
“Creating and Using varargout in Microsoft® Visual Basic Programs” on
page 12-27
“Using Array Formatting Flags” on page 12-30
“Using Data Conversion Flags” on page 12-33
“Blocking Execution of a Console Application that Creates Figures” on
page 12-39
“Magic Square Example” on page 13-2
“Creating an Excel Add-In: Spectral Analysis Example” on page 13-9
“Univariate Interpolation Example” on page 13-24
“Matrix Calculator Example” on page 13-32
“Curve Fitting Example” on page 13-43
“Bouncing Ball Simulation Example” on page 13-51

Sample Applications (C#)
“Simple Plot Example” on page 3-2
“Passing Variable Arguments” on page 3-7
“Spectral Analysis Example” on page 3-13
“Matrix Math Example” on page 3-20
“Phonebook Example” on page 3-28

Sample Applications (Visual Basic .NET)
“Magic Square Example (Visual Basic)” on page 4-3
“Create Plot Example (Visual Basic)” on page 4-7
“Variable Arguments Example (Visual Basic)” on page 4-11
“Spectral Analysis Example (Visual Basic)” on page 4-15
“Matrix Math Example (Visual Basic)” on page 4-20

A-2

Sample Applications (Visual Basic .NET)

“Phonebook Example (Visual Basic)” on page 4-25

A-3

A Examples

A-4

Glossary

Glossary

assembly
Logical collection of one or more managed EXE or DLL files containing
a .NET application’s code and resources.

CLS
See Common Language Specification.

common language runtime (CLR)
Run-time environment provided by the .NET Framework, which runs
the code and provides services that make the development process
easier.

Common Language Specification (CLS)
A subset of language features supported by the .NET common
language runtime (CLR). CLS includes features common to several
object-oriented programming languages, such as C#, VB.NET, and
C++ with managed extensions. CLS-compliant components and tools
are guaranteed to interoperate with other CLS-compliant components
and tools.

component installer
The self-extracting executable created by the builder packaging process,
which is used to deploy components created by the builder.

.ctf files
Component Technology Files, which are the encrypted MATLAB
functions compiled by the builder. CTF archive files are embedded in
the component generated by the builder as of R2008b.

data conversion classes
Provided by the builder to marshall data between MATLAB and other
languages.

feval API
Interface generated by the builder for a MATLAB function. Includes
both input and output arguments in the argument list. Output
arguments are specified first, followed by the input arguments.

Glossary-1

Glossary

finalization
Semiautomatic mechanism provided by the .NET Framework to help
clean up native resources just before garbage collection of a managed
object.

managed
Code written in a programming language that uses the Microsoft .NET
Framework. The languages share a unified set of class libraries and can
be encoded into an Intermediate Language (IL). A CLR runtime-aware
compiler compiles the IL into native executable code within a managed
execution environment that ensures type safety, array bound and index
checking, exception handling, and garbage collection.

marshal
To gather data from one or more applications and convert it to a format
that is prescribed for a particular receiver or programming interface.

MATLAB Compiler Runtime (MCR)
Part of the MATLAB Builder NE product. Required to run MATLAB
applications on machines that do not have the MATLAB desktop
installed.

mxArray
The MATLAB language works with only a single object type: the
MATLAB array. All MATLAB variables, including scalars, vectors,
matrices, strings, cell arrays, structures, and objects are stored as
MATLAB arrays. In C, the MATLAB array is declared to be of type
mxArray. The mxArray structure contains, among other things: its type,
its dimensions, the data associated with this array, the number of fields
and field names (if a structure or object).

native code resources
Resources that exist outside the control of the CLR.

.NET Framework
.NET is a software architecture developed by Microsoft to build
component-based applications. .NET components expose interfaces
that allow other managed applications and components to access their
properties, methods, and events.

Glossary-2

Glossary

Pascal case
A convention for capitalizing identifier names. The first letter in the
identifier and the first letter of each subsequent concatenated word is
capitalized. For example: MakeSquare.

project
A feature of the MATLAB Builder NE product accessed via the
Deployment Tool, which appears when you issue the deploytool
command. A project specifies components and classes to be created and
the functions to be associated with them.

reflection
Programming technique supported by CLR. Used to dynamically create
an instance of a type, bind the type to an existing object, or get the type
from an existing object, and then invoke the type’s methods or access its
fields and properties.

single output API
Interface generated by MATLAB Builder NE when only a single output
is required. Returns result as a single MWArray rather than an array
of MWArrays.

standard API
Interface generated by MATLAB Builder NE. Specifies inputs within
the argument list and outputs as an array of MWArray return values.

Glossary-3

Glossary

Glossary-4

Index

IndexA
access 12-2
Accessibility

DLLs to add to path enabling 9-3
Array Formatting

About 1-3
array formatting flags 12-29
Assistive technologies

DLLs to add to path enabling 9-3

C
capabilities 14-2
Class MWFlags 15-10
Class MWUtil 15-3
class name 1-25
class properties

properties, class 12-36
COM

defined 1-3
COM class

producing 14-23
COM component

as Excel add-in 13-9
registration 14-4
utility classes 15-1
VB examples of creating and using 13-1

COM Components
About 1-3

COM VARIANT 14-9
command line interface 11-5
Command Line Interface 1-17

Using .NET Bundles to Simply 1-18
Common Language Specification 1-2
compiler

errors 9-2
compilers

supported 9-2
component

access 12-2

component indexing 2-14
Component Object Model (COM)

defined 1-3
componentinfo function 10-2
Converting real or imaginary components

MATLAB arrays and vectors
ToArray 2-15

create phonebook example 3-28 4-25
CreateObject function 12-5
CTF Archive

Controlling management and storage
of. 2-24

D
data conversion

classes for .NET components 9-7
rules for .NET components 9-4
rules for COM components 14-9
utility classes for COM components 15-1

Data Conversion 1-26
About 1-3
Advantage to Using Conversion Classes 1-27

data conversion flags 12-29
Data Structure Arrays

Adding Fields 1-28
Data Structures

Adding Fields 1-28
Data Types

Casting in MATLAB® Builder NE 1-27
diagnostics 8-4
dispose 2-5
DLLs

utility classes for COM components 15-1

E
Enumeration

mwArrayFormat 15-31
mwDataType 15-31

Index-1

Index

mwDateFormat 15-32
enumerations 15-31
error handling 2-22
Error Handling

About 1-3
errors 8-4

COM components 8-4
compiler 9-2

examples 3-28 4-25
C# 3-1
C# create plot 3-2
Excel add-in 13-9
magic square 13-2

Excel add-in 13-9
exceptions 2-22

F
Figures

Keeping open by blocking execution of
console application 2-17

flags
array formatting 12-29
data conversion 12-29

G
Global Application Class (Global.asax) 5-28
global variables 12-36
Global.asax 5-28
Globally Unique Identifier (GUID) 14-5
GUID (Globally Unique Identifier) 14-5

I
IDL mapping 14-23
Indexing

About 1-3

L
limitations 9-3

M
magic square example 13-2
managed classes 1-24
MATLAB Array indexing

About 1-28
MATLAB Builder NE

introduction 1-2
system requirements 9-2

MATLAB® Builder™ NE
example of deploying 1-9

MATLAB Compiler 9-2
MATLAB Data Conversion

Classes 1-26
MATLAB Data Types

Automatic Casting in MATLAB® Builder
NE 1-27

Casting in MATLAB® Builder NE 1-27
MATLAB Function Signatures

About 1-12
MATLAB® Builder NE

Building a Component 1-13
Component and Class Naming

Conventions 1-25
Implementing Component On Another

Computer 1-28
Packaging a Component 1-16
Starting 1-10
Using Classes and Methods with 1-24
Using Component in .NET Application

Coding 1-21
Versioning 1-25

matrix math example
C# 3-20

MCR 1-20
Deploying Components With 1-20
Sharing Among Classes 1-17

Index-2

Index

singleton 1-17
MCR Component Cache

How to use
Overriding CTF embedding 2-24

messages 8-4
compiler 9-2

methods
error handling 2-22

missing parameter 15-5
multiple classes 3-13
MWArray class library 9-7
MWComponentOptions 2-24
MWFlags class 15-10
mwregsvr utility 14-4
MWUtil class 15-3

N
native resources

dispose 2-5
.NET common language runtime (CLR) 1-2
.NET component

C# examples of creating and using 3-1
installing 2-2
instantiating classes 2-4
specifying 2-3
VB examples of creating and using 4-1

.NET components
overview of creating 1-9

New operator 12-6

P
Packaging

About 1-16
problems 8-4

R
Remotable components 7-2
Remotable Components

About 1-3
Renderers

in WebFiigures 5-2
requirements

system 9-2
restrictions 9-3

S
self-registering component 14-4
Structs StructArrays

Adding fields 1-28
system requirements 9-2

T
troubleshooting 8-4

compiler errors 9-2
type library 14-4

U
unregistering components 14-4
utility library 15-3

V
VARIANT variable 14-9
version number

components 14-7
Versioning 1-25
versioning rules 14-7
Visual Basic mapping 14-25

W
WaitForFiguresToDie 2-17
Web Figure

WebFigure 5-2
WebFigures

Getting image data from a WebFigure 6-8

Index-3

Index

Supported renderers 5-2

Index-4

	toc
	Getting Started
	Product Overview
	MATLAB Compiler Extension
	Common Language Specification (CLS) Compliancy
	Data Conversion, Indexing, and Array Formatting
	Error Handling
	Remotable Components
	COM Components

	Before You Use MATLAB Builder NE
	Your Role in the .NET Application Deployment Process
	What You Need to Know
	Install Required Products
	Select Your C or C++ Compiler with mbuild -setup

	Deploying a Component Using the Magic Square Example
	About This Example
	Magic Square Example: MATLAB Programmer Tasks
	Starting the Deployment Tool
	Copying the Example Files
	Testing the M-File You Want to Deploy
	Building Your Component
	Packaging Your Component (Optional)
	Copying the Package You Created

	Using the Command Line to Create .NET Components
	Command-Line Syntax Description
	Using the .NET Bundle Files to Simplify the Command
	Example: Creating a .NET Component Namespace
	Example: Adding Multiple Classes to a Component

	Magic Square Example: .NET Programmer Tasks
	Gathering Files Needed for Deployment
	Using the Component in an Application
	MagicSquareApp.cs
	Distributing the Component to End Users
	Integrating .NET Classes Generated by MATLAB into a .NET Applica
	Overview of Classes and Methods in the Data Conversion Class Hie
	Advantage of Using Data Conversion Classes

	Building and Testing the .NET Application

	Next Steps

	Using Components Created by the MATLAB Builder NE Product
	Installing the Components on the Development Machine
	Specifying Component Assembly and Namespace
	Creating an Instance of a Class
	Using Dispose to Explicitly Free Resources
	Improving Data Access Using the MCR User Data Interface and MATL
	Code Snippets
	MagicMatrix Function
	Building the MagicMatrix Component
	Calling setmcruserdata
	Calling getmcruserdata
	Example
	MagixMatrix Function
	Building
	Executing
	udata.cs

	Dynamically Specifying Run-Time Options to the MCR
	What Run-Time Options Can You Specify?
	Getting MCR Option Values Using MWMCR
	Default MCR Options

	Accessing Real or Imaginary Components Within Complex Arrays
	Extracting Real or Imaginary Components
	Returning Values with Component Indexing
	Implementing Component Indexing on Full Complex Numeric Arrays
	Implementing Component Indexing on Sparse Complex Numeric Arrays

	Assigning Values with Component Indexing
	Implementing Component Indexing on Full Complex Numeric Arrays

	Converting MATLAB Arrays to .NET Arrays Using Component Indexing
	Converting MATLAB Arrays to .NET Arrays
	Converting MATLAB Arrays to .NET Vectors

	Blocking Execution of a Console Application that Creates Figures
	WaitForFiguresToDie Method
	Code Fragment: Using WaitForFiguresToDie to Block Execution

	Using MATLAB API Functions in a C# Program
	Overview
	Example: Using functions engOpen and engEvalString from the MATL

	Handling Errors
	Overriding Default CTF Archive Embedding for Components Using th
	Using Enhanced XML Documentation Files

	Sample Applications (C#)
	Simple Plot Example
	Purpose
	Procedure
	PlotApp.cs

	Passing Variable Arguments
	Step-by-Step Procedure
	drawgraph.m
	extractcoords.m
	VarArgApp.cs
	Spectral Analysis Example
	Purpose
	computefft.m
	plotfft.m
	Procedure
	SpectraApp.cs

	Matrix Math Example
	Purpose
	Procedure
	MatrixMathApp.cs
	MATLAB Functions to Be Encapsulated
	cholesky.m
	ludecomp.m
	qrdecomp.m
	Understanding the MatrixMath Program

	Phonebook Example
	Purpose
	Procedure
	PhoneBookApp.cs

	Sample Applications (Microsoft Visual Basic .NET)
	Magic Square Example (Visual Basic)
	MagicSquareApp.vb
	Create Plot Example (Visual Basic)
	PlotApp.vb
	Variable Arguments Example (Visual Basic)
	VarArgApp.vb
	Spectral Analysis Example (Visual Basic)
	SpectraApp.vb
	Matrix Math Example (Visual Basic)
	MatrixMathApp.vb
	Phonebook Example (Visual Basic)
	makephone Function
	Procedure
	PhoneBookApp.vb

	Deploying a MATLAB Figure Over the Web Using WebFigures
	About the WebFigures Feature
	Supported Renderers for WebFigures

	Before You Use WebFigures
	Your Role in the .NET WebFigure Deployment Process
	What You Need to Know to Implement WebFigures
	Required Products
	Assumptions About the Examples

	Quick Start: Implementing a WebFigure
	Overview
	Procedure

	Advanced Configuration of a WebFigure
	Overview
	Manually Installing WebFigureService
	Retrieving Multiple WebFigures From a Component
	Working with Functions that Return a Single WebFigure as the Fun
	C#
	Visual Basic
	Working With Functions That Return Multiple WebFigures In an Arr
	C#
	Visual Basic

	Attaching a WebFigure
	Setting Up WebFigureControl for Remote Invocation
	Getting an Embeddable String That References a WebFigure Attache
	Referencing a WebFigure Attached to the Local Server
	Referencing a WebFigure Attached to a Remote Server

	Improving Processing Times for JavaScript Using Minification
	Using Global Application Class (Global.asax) to Create WebFigure
	C#
	Visual Basic

	Upgrading Your WebFigures
	Troubleshooting
	Logging Levels

	Working with MATLAB Figures and Images
	Your Role in Working with Figures and Images
	Creating and Modifying a MATLAB Figure
	Preparing a MATLAB Figure for Export
	Changing the Figure (Optional)
	Alter Visibility
	Change Background Color
	Alter Orientation and Size

	Exporting the Figure
	WebFigure
	Image Data

	Cleaning Up the Figure Window
	Example: Modifying and Exporting Figure Data
	WebFigure
	Image Data

	Working with MATLAB Figure and Image Data
	For More Comprehensive Examples
	Working with Figures
	Getting a Figure From a Deployed Component

	Working with Images
	Getting Encoded Image Bytes from an Image in a Component
	.NET
	Getting a Buffered Image in a Component
	.NET
	Getting Image Data from a WebFigure
	.NET

	Sharing Components Across Distributed Applications Using .NET Re
	Overview
	What Are Remotable Components?
	Benefits of Using .NET Remoting

	Your Role in Building Distributed Applications
	Selecting the Best Method of Accessing Your Component: MWArray A
	Creating a Remotable .NET Component
	Building a Remotable Component Using the Deployment Tool
	Preparing To Build Your Remote Component with deploytool
	Build Your Remote Component with deploytool

	Building a Remotable Component Using the mcc Command
	Files Generated by the Compilation Process

	Enabling Access to a Remotable .NET Component
	Using the MWArray API
	Why Use the MWArray API?
	Coding and Building the Hosting Console Server and Configuration
	Coding and Building the Client Application and Configuration Fil
	Starting the Console Server
	Starting the Client Application

	Using the Native .NET API
	Why Use the Native .NET API?
	Coding and Building the Hosting Console Server and Configuration
	Coding and Building the Client Application and Configuration Fil
	Starting the Console Server
	Starting the Client Application

	Troubleshooting
	Troubleshooting the Build Process
	Viewing the Latest Build Log
	Generating Verbose Output

	Failure to Find a Required File
	Diagnostic Messages
	Enhanced Error Diagnostics Using mstack Trace

	Reference Information
	Requirements for the MATLAB Builder NE Product
	System Requirements
	Compiler Requirements
	Path Modifications Required for Accessibility
	Limitations and Restrictions
	Using CGI Scripts

	Data Conversion Rules
	Managed Types to MATLAB Arrays
	MATLAB Arrays to Managed Types
	Character and String Conversion
	Unsupported MATLAB Array Types

	Overview of Data Conversion Classes
	Overview
	Returning Data from MATLAB to Managed Code
	Example of MWNumericArray in a .NET Application
	Interfaces Generated by the MATLAB Builder NE Product
	Single Output API
	Standard API
	feval API

	MWArray Class Specification

	Function Reference
	Creating and Installing COM Components
	Building a Deployable Application
	Files in the Self-Extracting Executable
	About Embedded CTF Archives
	Using the Command-Line Interface
	Installing COM Components on a Target Computer

	Programming with COM Components Created by the MATLAB Builder NE
	General Techniques
	Registering and Referencing the Utility Library
	Creating an Instance of a Class in Microsoft Visual Basic
	Advantages and Disadvantages
	CreateObject Function
	Microsoft Visual Basic New Operator
	Advantages of Each Technique
	Declaring a Reusable Class Instance

	Calling the Methods of a Class Instance
	Standard Mapping Technique
	Variant
	Examples of Passing Input and Output Parameters

	Calling a COM Object in a Visual C++ Program
	Using the MATLAB Builder NE Product to Create the Object
	Using the Component in a Visual C++ Program

	Using a COM Component in a .NET Application
	Overview
	C# Implementation
	Microsoft Visual Basic Implementation

	Adding Events to COM Objects
	MATLAB Language Pragma
	Using a Callback with a Microsoft Visual Basic Event
	iterate.m
	progess.m

	Passing Arguments
	Overview
	Creating and Using a varargin Array in Microsoft Visual Basic Pr
	Creating and Using varargout in Microsoft Visual Basic Programs
	Passing an Empty varargin From Microsoft Visual Basic Code
	Example: Passing an Empty varargin From VBA Code

	Using Flags to Control Array Formatting and Data Conversion
	Overview
	Array Formatting Flags
	Using Array Formatting Flags
	Modifying Output Format
	Output Format in VBScript

	Using Data Conversion Flags
	Special Flags for Some Microsoft Visual Basic Types

	Using MATLAB Global Variables in Microsoft Visual Basic
	Blocking Execution of a Console Application that Creates Figures
	MCRWaitForFigures
	Using MCRWaitForFigures to Block Execution

	Obtaining Registry Information
	Handling Errors During a Method Call

	Using COM Components in Microsoft Visual Basic Applications
	Magic Square Example
	Example Overview
	Creating the M-File
	Using the Deployment Tool to Create and Build the Project
	Creating the Microsoft Visual Basic Project
	Creating the User Interface
	Creating the Executable in Microsoft Visual Basic
	Testing the Application
	Packaging the Component

	Creating an Excel Add-In: Spectral Analysis Example
	Example Overview
	Building the Component
	Integrating the Component with VBA
	Creating the Main VBA Code Module

	Creating the Microsoft Visual Basic Form
	Adding the Spectral Analysis Menu Item to Microsoft Excel
	Saving the Add-In
	Testing the Add-in
	Creating the Data
	Running the Test

	Packaging and Distributing the Add-In

	Univariate Interpolation Example
	Example Overview
	Using the Deployment Tool to Create and Build the Component
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	Matrix Calculator Example
	Example Overview
	Building the Component
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	Curve Fitting Example
	Example Overview
	Building the Component
	Building the Project
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	Bouncing Ball Simulation Example
	Example Overview
	Building the Component
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	How the MATLAB Builder NE Product Creates COM Components
	Overview of Internal Processes
	How Is a MATLAB Builder NE Component Created?
	Code Generation
	Create Interface Definitions
	C++ Compilation
	Linking and Resource Binding
	Registration of the DLL

	Component Registration
	Self-Registering Components
	Globally Unique Identifier
	Versioning

	Data Conversion
	Conversion Rules
	Array Formatting Flags
	Data Conversion Flags
	CoerceNumericToType
	InputDateFormat
	OutputAsDate As Boolean
	DateBias As Long

	Calling Conventions
	Producing a COM Class
	IDL Mapping
	Microsoft Visual Basic Mapping

	Utility Library for Microsoft COM Components
	Referencing Utility Classes
	Utility Library Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Examples
	COM Components
	Sample Applications (C#)
	Sample Applications (Visual Basic .NET)

	Glossary
	Index

	tables
	Application Deployment Roles, Goals, and Tasks
	Key Tasks for the MATLAB Programmer
	Files in the Project Subfolders
	Key Tasks for the .NET Programmer
	WebFigures for .NET Deployment Roles, Responsibilities, and Task
	GetHTMLEmbedString API Parameters
	.NET Remoting Deployment Roles, Responsibilities, and Tasks
	Features of the MWArray API Compared With the Native .NET API
	Diagnostic Messages and Suggested Solutions
	Conversion Rules: Managed Types to MATLAB Arrays
	Conversion Rules: MATLAB Arrays to Managed Types
	Registry Information Returned by componentinfo
	Using the Command Line to Create COM Components
	VARIANT Type Codes Supported
	MATLAB to COM VARIANT Conversion Rules
	COM VARIANT to MATLAB Conversion Rules
	Array Formatting Flags
	Array Formatting Rules for Input Arrays
	Array Formatting Rules for Output Arrays
	Conversion Rules for Input Dates
	mwArrayFormat Values
	mwDataType Values
	mwDateFormat Values

